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FOREWORD
By Dr Frederick H. Todd

This report is a wide-ranging account of the fundamentals of the potential flow of
frictionless fluids, and its value i3 greatly enhanced hy the large ..umber of actual exsmples
included in the text. It will be of great value both to the practicing engineer concerned with
fluid fﬁ;\vs and to the student.

Dr. Earle H. Kennard was formerly Chief Scientist in the Hydromechanics Laboratory at
the David Taylor Model Basin, and later head of its Structural Mechanics Laboratory. Through-
out his service at the Model Basin he devoted his efforts to the advancement of knowledge in
these fields and to the physics ol underwater explosions. The value of his work in these
areas and in the associated one of structural vibration is well attested by the many papers
and reports which he has published.

He has also devoted much time to the education and training of the younger members cf
the staff. His educational work, indeed, began much earlier as a professor at Cornell Univer-
sity, and unnumbered students have profited from his well-known text book on physics.

His colleagues have learned to respect his judgements, to enjoy his friendship and to
appreciate his wit, even though it is sometimes somewhat sharp!

This report is a typical example of Sarle Kennard’s clear, explanatory writing, com-
bined nevertheless with an admirable economy of words. It is a great pleasure to his many
friends and admirers to see it published while Dr. Kennard, though over 80 years of age,
is still active and still continuing to work in the field of structural vibration. We lock for-
ward to the privilege of making more of his work avaiiable to the profession of naval archi-
tecture through the medium of Model Basin reports, for it is upon such people as Dr. Kennard
and the results of their research that the reputation and imeage of the establishment depends.
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NOTATION

Constants

Constants; semi-axes of ellipse or e!lipsoid
Ellipticity of an ellipse

Force on a body

Force per unit length on a cylinder
Constant; sign of a function of a variable

A constant

A constant, real or sometimes complex
Moment or inertia

Equivelent moment of inertia of fluid moving irrotationally scound or irside a
rotating body

Symbol deroting that only the imaginary part, of the expression following it is to
be taken, with omission of the factor ¢

ST

A rea) constant; inertia coefficient

Direction cosines, or constants

Mass of a body

Equivalent mass of fluid moving around a body that is in translational motion

Values of ¥, M “taken per unit length of a cylindse, in cases of two-dimensional
motion,

Torque per unit length on a cylinder

Pressure in the fluid

Magnitude of particle velocity in the fluid

Component of the velocity in direction normal to a curve or surface
Components of velocity in the directions of polar coordinates r, 6,
Component of velocity in the direction of the tangent to a curve
Components of velocity in the directions of cylindrical! coordinates 2, @, w
Radius of a circle

Symvol denoting that only the real part of the expression following it is to be
taken

A polu: couvtdinate; in two dimensions, distance from a line; in ihree dimensions,
distance from a point

Denotes a surface
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Kinetic energy of the fluid

T, In two-dimensional motion, kinetic energy of the fluid between two planes of
flow unit distance apart

t Time; also, an auxiliary complex variable

U Uniform siream velocity at infinity; velocity of translation of a body

u Component of velocity in the z-direction

4 Same as U but always specifically parallel to the y-axis

v Component of volocity in the y-direction

w In three dimensions, component of velocity in the z-direction; in two dimensions,
waeg+ i

X, Y, 2 Components of force on a body

Xys Y;» 2, Components of force per urit length on a cylinder

z, ¥ Cartesian coordinates

2 In threo dimensions, the third Cartesian coordinate; in two dimensions, z = ¢ + iy
a, B,y Constants, usually angles

r Circulation around a curve or about a cylinder N

€ An angle

I For two dimensions, a complex variable; { = A — iu in secs 88-90, { = £+ ip in

secs. 81-86 and 106, and ¢ =- dz/dw in secs. 111-117; for three dimensions, a
spheroidal coordinate in secs. 137-138

) An elliptic coordinate in Secs. 81-86, 106
0 An angle
A A special coordinate in Secs, 88-90, 136, 141
A A, Paraholic coordinstes in Sec. 87
n Moment of n point dipole, o moment per unit length cf a line dipoie; a special
coordinate in Secs. 88-90, 107, 136, or a spheroidal coordinate in Secs. 137-138
v Dipole strength per unit length in Sec. 132; a special coordinete in Secs. 107, 136
¢ An elliptic coordinate in Secs. 81-8€ and 108
@ Distance from a line, sometimes used as a cylindrical coordinate
Density of the fluid, in dynamical units
¢ Velocity potential
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Y Streum function, for either two-dimensional or axisymmetric three-dimensional
motion

Anguiar velocity, in radians per second; angle about a line, used with z, & as
a cylindrical coordinate or with £, u as a spheroidal coordinate

Dyy Wyy @ Cemponents of angular velocity about the z-, y-, z-axes
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INTRODUCTION

In the work of the David Taylor Model Basin a need was folt some twenty
vears ago for a collection of the known typesof the potential flow of frictionless
fluids having a uniform and invariable density. The following report was intended
to meet that need in a form convenient for reference.

In Chapter I the chief principles needed in dealing with the potential flow
of a fneuonless fluid are deseribed. In this chapter, but not elsewhere, variation
of the fluid density 1s semetimes allowed. In Chapter 11 the use of mathematical
complex functions in dealing with two-dimensional problems is explained. Then
Chapter HI deals with two-dimensional cases and Chapter IV with three-dimensional
cases. Fometimes boundary conditions in the form of vortices or vortex lines are
allowed. Chapter V lists coefficients of inertia.

The fluid velocity in potential flow is assumed to equal the negative grad-
ient of the velocity potential, as in the textbooks of Lamb and of Milne-Thomson.
An older assumption was that the velocity equals the positive gradient of the
potential. The formulas given in this report can be adapted to this older assump-
tion by reversing in all formulas either the potential or all of the fluid velocities
wherever these occur.

It was found necessary, however, to limit =cmewhat the field that is covered.
The extensive literature in which incidental use i made of porential flow in treating
practical flow problems is not even listed. Curved line vortices have not been
included, nor interacting spherical boundaries. nor the thin curved stratum that is
discussed in Articie 80 of Lamb’s Hydrodynamics.

This report was finished during the last war, but its great volume was con-
sidered to make publication impractical at that time. Publication has finally been
effected. No additions have been made, however, to take account of literature
published since the war.

Xxiv




CHAPTER |
FUNDAMENTALS OF THEIRROTATIONAL FLOW OF FRICTIONLESS FLUIDS

In this chapter the nature and properties of the irrotational or potential flow of friction-
less fluids will be discussed to the extent that is desirable for the understanding and use of
the material that forms the body of the report. This chapter may be regarded as an introduction
to the subject, but it does not aim at a comyplete exposition of the mathematical theory of the
potential, Further information on the mathematicaj side may be found in the textbooks of
Lamb! and Milne-Thomscn,? in MacMillan's or Kellog's ““Theory of the Potential,’*!2 or in the
periodical literature.

1. PARTICLE VELOCITY AND STREAM LINES

The velocity of the particles in a fluid may vary from point to point in a complicated
manner. By a particle of the fluid is meant a pertion so small that both its linear dimensions
and differences in the motion of its parts may be neglected. The motion of the fluid at any
instant can be described completely by specifying the particle velodity at each point.

At any given instant, a set of curves can be drawn such that at every point on a curve
its tangent has the direction of the particle velocity at that point. These curves are called
streamlines; the aggregate of them is sometimes called a flow pattern, Thus at any given
instant the particles are all moving along the streamlines as they exist at that instant.

If the stzeamlines remain fixed in position, the particles will continue to follow them,
and the streamlines will then represent the actual paths of the particles. If the motion under-
goes changes, however, the actual paths of the particles may be quite different from any of the
instantaneous streamlines. Thus in Figure 1, curves a, b, ¢ may represent stroamlines at a
time ¢, and curves a’, b’ ¢’ may be the streamlines at a later time ¢, whereas the actual paths
pursued by particles P, P, from time ¢ to ¢” are as shown by the heavy curves.

An important case in which the paths of the particles coincide permanently with the
stzeamlines is the case of steady motion. The motion of a fluid is called steady when the
particle velocity at each point in space remains constant. The velocity of a given particle
may vary, however, as it moves from point to point. Motion may be steady when referred to
one frame of reference and variable when referred to another. Thus the motion of the air
around an airplane in steady flight is a steedy motion as seen by the pilot, whereas at a
fixed p -at above the ground the velocity of the air changes as the airplane goes past.

IReferences are listed on page 396.
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Figure 1 — Two successive positions of
several streamlines and, shown by heavy
curves, the paths of two particles.

Figure 2 — Relation between the velocity and
its components.

In addition to stzeamlines, the concept of tubes of flow is sometimes useful. A tube of
flow is a slender filament of fluid whose bounding surface is composed of streamlines.
The particle velocity is a vector quantity. Its magnitude will be denoted by ¢; its com-

ponents in the directions of the z-, y-, z-axes of a rectangular Cartesian coordinate system will
be denoted by ¥, v, w. Thus

2

% =uf + 02 402 [1a]

The component ¢, of the velocity in a direction whose direction cosines are !, m, n can then
be written

g, =lu+mv +nw [1b]

as is evident from Figure 2, in which the component in the direction OP is represented by the
projection on OP of either the vector 0Q representing the velocity or of the broken line ORSQ,
whose segments represent u, v, and w,

Since ¢, u, v, and w may vary from point to point, and also with the time, they may be
regarded as functions of the four variables z, y, z, and ¢, In steady moticsn, however, every-
thing is a function of z, y, z only.

2. THE EQUATION OF CONTINUITY

A relation must exist between the motion of a fluid and changes in its density. If, for
example, more fluid enters a given volume than leaves it, the density of the fluid in the
volume must increase.

Consider a small cubical element of sides 6z, 8y, 6z whose center is situated at the
point (z, y, 2), as in Figure 3; let it be fixed in size as well as inposition in space. Fixing
attention first on the increase in mass due to flow through the two faces perpendicular to the

s v




z-axis, the amount of mass per unit time enter-

ing the cube through its left-hand face, per ?

unit time, is
a(py) 5z b2
~—2 0% 5ys (z,y.2)
(e ) ove:
where pu stands for the value of this quantity //L—- —_—
at the point (z, ¥, 2). The amount which 5z 8y y

leaves through the opposite face is

a(pu)sx
U+ — L) 5y s
(p Jz 2) yoz

The net increase in mass per unit time due to Figure 3 — Illustrating the equation of
flow in the z-direction is the inflow minus the continuity.
outflow or
d(pu
- ._(p__) 8;8.1/8
dz

In an analogous manner the net increases in mass per unit time due to flow in the y- and 2-
directions are, respectively,

a{pv) d(pw)
-—5;-83:83/82, ——f;;— oz dydez

The net increase in mass per unit time fex all three component directions must equal the
increase of mass per urit time within the cube, which is

9 (pbz 8y 82
o (pbz 8y 82)
As the sides of the cube are fixed, this can also be written

9p

dxdySz
3t °c Y

Collecting the terms and dividing through by the volume or 528y 82, we obtain the equation of
continuity,

dp dou) dpv) d(pw)
— + + + =
ot dz ay dz

0 Y2a]

This equation must be satisfied at all points throughout the fluid.

In the subsequert chapters on two- and three-dimensicnal flow we are mainly concerned
with fluids of constant density so that p does not vary in space or in time. For this case,
dp/dt becomes zero and the equation of continuity takes the form, after canceling out p,

Ju, v v 2b
az+ay+az (26]




3. EULER'S ZQUATIONS OF MOTION

The equations of motion for a fluid are the mathomatical equivalent of Newton’s second
law of motion, which states that the resultant force on any particle equals the product of the
mass of the particle by its acceleration. For convenience we may assume a fluid particle to
have the form of a cube whose edges are éz, 5y, 82 parallel to the z-, y-, z-axes as in Figure 4,
Considering the cube as a free body, the forces acting on it may be considered as made up of
three parts: compressive o« tensile, shear, and extornal forces, such as gravity. On each
face there may be two shear force components parallel to the coordinate axes.

Shear forces, in a fluid, are due to a physical property of the fluid known as viscosity,
by virtue of which it offers resistance to motien involving the production of sheating strain.
All actual fluids have viscosity, but in some fluids, cuch as water, the viscosity is quite
small. In many flow problems the viscous forces are so small as compared with other forces
that their effect may be neglected. This greatly simplifies the mathematical treatment of the
problem. Throughont this report, the assumption will be made that the viscosity is zero; this
is equivalent to saying that the fluid cannot sustain a shear stress, or that it is frictionless.

Let the pressute ot force pet unit area at the center of the cube be p, and consider the
two faces of the cube normal to the z-axis, Since the pressure will be a function of «, y, 2,
the average pressure on the left-hand face will be

. 9P 5z
p=p 3 2
and that on the right-hand face,
VY] ap 53:
po=py oz 2

The resultant force due to pressure in the positive z-direction will be the difference between
the pressures on these two faces multiplied by the area of a face or

dp
~— 8z 8y b2
dx

Let X be the ccmponent of the external

i , forces per unit mass of fluid in the z-direction.
LA LA F ¥ Usually the only source of external forces is
(:.;.a; gravity, The external fo.ce acting on the
| material in the cube in this direction is then
— 5y y pX Bz 8y 5z
&z

where p is the mass density. Here p must be
expressed in dynamical units, for example, in

. slugs per cubic foot or pounds sec?/ft%, As

the viscosity has been assumed zero, there can
Figure 4 - Illustra’ing Euler’s equation

. be no cther forces acting in the z-direction,
of motion.

and the resultant force on the material in the
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cube is 3
(pX ——2-)82: 8y dz
Jdz

This force is now equal to the mass of the particle in the cube multiplied by its acceleration
in the z-direction, which will be denoted by du/d:, Hence

a
(pX ——E)S:c 8y 8z = p dz 8y82ﬂ.
ox dt [39.]
du 197

a7 Poz

In this equation, u has reference to a certain particle of the fluid, which at a given in-

no interest actually to follow & particle in its motion; it is more convenient to regard v as a
function of position and time o

u(Z, ¥y 2, ¢)
without regard to the identity of the particle whose coordinates at a particular time ¢ are
reptesented by z, y, 2. Viewed from this mathematical standpoint, the change in v during the
time d¢ at the particle just considered may be written

du=§-’-‘dz+@dy+@dz + 9% gy
oz dy dz ot

Here dz represents the change in the z-coordinate of the particle during the time d¢; hence
dz = u dt. Similarly, dy = v d¢, dz = w d¢t. Hence, after dividing through by d¢,

du _du, ,9u , 09 ., 00 {3b]
di ot daz Yy d2

Here du/dt represents the rate of change of v at a given particle, whereas du/d¢ represents the
rate of change in u at a fixed point in space. The last three terms represent an effect due to
mction of the particle and are sometimes called convection terms.

Thus, Equation [3a] may be written, together with the analogous equations for the y-
and z-directions, in the form known as Euler’s equations:

-‘2’-‘+u£7-'.‘.+v§-‘-‘-+w-‘2'-‘-=/\’—l-?—’i

3¢
a dx  dy 9z P oz f3¢]
3,0, , 00, vy 1% [3d)
a dzr Jdy oz Py
v, yow, ,w, L dw_g 1 3
% Ve Py e P 3z f3e}

where X, Y, Z are the components of the external force per unit mass. These equations hold
whether the density of the fluid is constant ot not; in general, p is a function of 2, y, 2. and ¢,
For a fluid of constant density, Equations [2b], (3¢c], (3d], and [3e] constitute four
diffetential equations in four unknowns: u, v, w, and p. As arbitrary constants and functions
enter into the solutions of differential equations, boundary conditions are required in order to
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This force is now equal to the mass of the particle in the cube multiplied by its acceleration
in the z-direction, which will be denoted by du/dt. Hence

( X -——)83‘83/82 = p 52 5y 52 9L
d da (3a]
du g 19
dt P oz
In this equation, u has reference to a certain particle of the fluid, which at a given in-
stant occupies a certain cube but whose position in space varies. Usually, however, itis of
no interest actually to follow a particle in its motion; it is more convenient to regar. « as a
function of position and time or
u(Z, y, 25 ¢)
without regard to the identity of the particle whose coordinates at a particular time ¢ a:e
reprosented by z, y, 2. Viewed from this mathematical standpoint, thc change in u during the
time dt at the particle just considered may be written
du—a“dxqﬂa“dy«e@dz +a“dt
Jr dy
Hete dz represents the change in the z-coordinate of the particle during the time d¢; hence
dz = u d!. Similarly, dy = v dt, dz = w d¢t. Hence, after dividing through by d¢,

du _ du, ua_u_+va—”-+w-‘i'£ {3b]
dt gt 0z gy J2

Here du.’d¢ represents the rate of change of u at a given particle, whereas du/Jt represents the
rate of change in u at a fixed point in space. The lzst three terms represent an effect due to
motion of the particle and are sometimes called convection terms.

Thus, Equation [3a] may be written, together with the analogous equations for the y-

and z-direciions, in the form known as Euler’s equations:

g+u§£+v@+wa_g=x_i"_? [3¢c]
224 oz ay dz P oz
v, L, v, vy 19 (3d]
a Vet Vay ¥ az P 9y

Low, L dw, L ow_ 5 19 (3e]
at e dy 9z P 9z

where X, Y, Z are the components of the external force per unit mass. These equations hold
whother the density of the fluid is constant or not; in general, p is a function of z, y, 2, and ¢.
For a fluid of constant density, Equations [2b], [3c], [3d], and [3e] constitute four
differential equations in four unknowns: u, v, @, and p. As arbitrary constants and functions
enter into the solutions of differential equations, boundary conditions are required in order to
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remain closed, and the circulation about them must remain zero. Since a state of rest is a
state in which the circulation vanishes about all closed curves, the application of pressure to
the fluid can generate in it only irrotational motion. For this reason, the motion generated by

a moving ship in the surrounding water or by an airplane in the air is roughly irrotational,
except near the solid surfaces where friction plays a large role,

6. THE VELOCITY POTENTIAL FOR IRROTATIONAL FLOVW

Only irrotational motion will be considered hereafter. Its mathematical izeatment can
be greatly simplified by introducing the velocity potential.
If the motion is irrotational within a singly connected region, the integral

)

f 9, ds
by
taken along any path lying in the region and connecting two given points, P, and P,, depends
only on the positions of the points P, and P,. The integral is defined as in the last section;
the chosen direction of motion along the path is from P, toward P,.

To prove the statement just made, note that any two paths B, and B,, as illustrated in
Figure 6a, when taken together form a closed curve around which the circulation vanishes, so

that
) 4!
j @) 4.9, +f (B,) 9,4, =0
A F
But
2 l’o
7] ¢
|
|
\
r ,
ey P y
[)
1 r
Figure 6a Figure 6b

Figure 6 — Illustrating properties of the velocity potential.
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eliminate them and so make the solution determinate.

4. BOUNDARY CONDITIONS

At the boundaries of the fluid the continuity equation is replaced by special surface
conditions. For examplo, at a fixed boundary it is necessary that the fluid velocity have no
component normal to the surface. If !, @, n are the direction cosines of the normal to the
sutface, this condition requires that

lu+mv+nw=0 [4a]
at every point on the surface; compare Equation [1b].

If the boundary is in motion, the normal component of the fluid velocity at the surface,
or ¢, = lu + mv + nw, must equal the velocity of the surface normal to itself, This is equiva-
lent vo saying that the velocity of the fluid relative to the surface is wholly tangential, or that

a particle on the surface remains on the surface, A method of finding !, m, n when the equation
of the surface is given is derived in Sec. 135,

5. ROTATIONAL MOTION; THE CIRCULATION

In the kinematics of rigid hodies, a distinction is made between translational and
rotational n.otion, In rotational motion, all particles not on the axis go round the axis in
circles, An analogous but more general conception of rotational motion in a fluid can be
developed as follows,

Consider any ciosed curve ¢ drawn in the fluid, and choose a positive direction of
motion around the curve, as in Figure 5a. At each point of the curve, divide the particle
velocity into a component perpendicular to the curve and a component g in the direction of
the tangent tc the curve; let ¢ be taken positive when it has the same direction as the chosen
positive direction of motion around the curve and negative when it has the opposite direction.
In Figure 5a, ¢, is positive at P but negative at Q. Multiply each element of length ds along

qs

Figure a Figure b

Figure 5 — Illustrating the definition of the circulation.
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the curve by the value of q, at that element and add the products, thus forming the line inte-
gral

$ g, ds
where § indicates that the integration extends around the whyle curva, This integral is
called the circulation of the fluid around the curve C. It may be regarded as a measure of the
extent to which the fluid is moving in a rotational manner along this particular path,

The integral can 2iso be written ¢ ¢ _ds= §(udz + vdy + w dz) since the direction
cosines of ds are dz/ds, dy/ds, dz/ds and hence, by Equation [1b},

If the fluid is actually moving like a rotating rigid body, the circulation about any closed
curve lying in a plane perpendicular to the axis of rotation is equal to twice the angular
velocity of rotation w multiplied by the area enclosed by the curve. This is easily seen in the
special case of a circie whose axis is the axis of rotation, as in Figure 5b; hete ¢ = ¢, = wr,
where r denotes distance from the axis, and the circulation around the circle is

$¢, ds=fwrds=wrfds=wr(2r7) = 2(w) (n+?). The same result is obtained, by evaluation
of the integral, for a circle centered anywhere.

Motion of a fluid in which the circulation is zero around any continuousiy collapsible
curve is called érrotational motion ot flow. The significance of the coliapsibility of the curve
can be illustrated in the space occupied by the body of a doughnut. Any closed curve in this
space that is not linked with the central hole can be shrunk down continuously onto a point,
or can be deformed in continuous fashion into any other curve of the same type. Curves that
link with the hole, on the other hand, although continuously deformable into each other, can
never be shrunk below a certain mirimum size. .\ region in which closed curves fall into two
classes with respect to collapsibility is called doubly connected; a region in which all curves
are completely collapsible is called singly connected. In some cases there are more than two
such classes of curves. Regions in which there are at least two classes are called multiply
connected, In irrotational motion in a multiply connected region, the circulation is required to
vanish only about the closed curves that are coniinuously collapsible down to 2 point.

The great importance of irrotational flow a.ises from the following dyramical theorem,
which is proved in Sec. 33 of Lamb’s Hydrodynamics.?

Suppose that the fluid is frictionless, ard that its density, if not uniform and constant,
is at least a definite, fixed function of the pressure. Let the external forces be conservative,
as are those due to gravity; that is, the total work done by these forces on a given mass
vanishes when the mass is carried around any closed curve. Then the circulation around any
closed curve that is allowed to move with the fluid is consiant in time,

1t follows from this theotem that, if a mass of frictionless fluid acted on only by con-
servative forces heppens to be moving irrotationally at any instant, it will continue to move
irrotationally thereafter. Closed curves moving with the fluid may change their shape, but they




remain closed, and the circulation about them must remain zero. Since a state of rest is a
state in which the circulation vanishes about all closed curves, the application of pressure to
the fluid can generate in it only irrotational motion. For this reason, the motion generated by
a moving ship in the surrounding water o by an airplane in the air is roughly irrotational,
except noar the solid surfaces where friction plays a large role.

6. THE VELOCITY POTENTIAL FOR IRROTATIONAL FLOW

Only itrotational motion will be considerad hereafter. Its mathematical tzeatmont can
be greatly simplified by introducing the velocity potential.
If the motion 1s irrotational within a singly conr~_wd region, the integral

Py

f 7, @3

Py

taken along any path lying in the region and conrecting two given points, P, and P,, depends
only on the positions of the points P, and P,. The integral is defined as in the last section;
the chosen direction of motion along the path is from P, toward F,,.

To prove the statement just made, note that any two paths B, and B,, as illustrated in

Figute 6a, when taken together form a closed curve around which the circelution vanishes, so
that
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Figure 6 — Illustrating properties of the velocity potential.
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A Py
j (82) qs ds =—f (82) qsds
P2 Pl

since interchange of the limits reverses the direction of motion along the path and hence the

positive direction for 7 . Hence
P, 7

2 2
f (Bl) ‘Isds"’f (By) a4,
P, P

1
It follows that, if ¢ is defined as

0
¢ =f q,d, {6a)
P

zlong any path joining any point P to a fixed point Py, ¢ will be a single-valued function of the

coordinates z, y, z of P,

Furthermore,
) d ) P\ 19b\2 19 \2
u=-—(ﬁ, ‘U:-—-—(—ﬁ, w:——‘é, q2=('i) +(—é>+(—<ﬁ—) [Gb, C, d, e]
oz dy dz oz dy s

where u, v, w are the components of the particle velocity at P. For, let the path be drawn so
as to run from P straight to a neighboring point P’, which is displaced a distance §z from P
toward + 2 without change of y or 2, as in Figure 6b, Then, if §4 is the difference in the

values of ¢ at P’ and st P, pe

¢ = - f q, ds
P
since the path from P’ differs from that drawn from P only by the omission of the additional
stretch PP, But along this stretch ¢, = u, and is constant in the limit as P “approaches P,

Hence ,
P

Sp=-u f ds = - udz
P
Equation [6b] follows; and Equations [6¢c, d] can be similarly obtained.

The function ¢ thus introduced is called the velocity potential. 1If it is known at all
points, the particle velocity can be found from it by differentiation. The sign has been chosen
in such a way that the potential decreases in the direction of the particle velocity. The
relation between the velocity and the velocity potential is the same as the relation between
the electric intensity and the eiectrostatic potential.

Since the position of P is arbitrary, the velocity potential, like the electrostatic
potential, contains an arbitrary additive constant, A surface over which ¢ has a constant
value is called an equipotential surface. As the derivative of ¢ with respect to any element

—p—— -




of distance along the surface is zero, there can be no component of the particle velocity
tangent to an equipotential surface; compare Equation [6f] below. Thus the direction of the
velocity is everywhere norrizl to the equipotential surfaces; and, since the streamlines have
everywhere the direction of the velocity, the streamlines cut the equipotential surfaces per-
pendicularly.

Certain other relations between the velocity and the potential may be notea. The
component of the velocity in any given direction can be written

deb

9s =35 (of]

here d¢/ds is the space derivative of ¢ in the given direction or

9% _ lim A9

ds  As-0As
where As is a displacement in that direction and A¢g is the corresponding change in ¢. The
proof is similar to that of Equations [6b, ¢, d]. By integrating Equation [6f] it is seen that the
change in ¢ from one end to the other along any path is

Agp=~fg ds [6g]
where the integral is taken along the path.

It is often convenient to use spherical polar coordinates r, 6, w. Here r is the distance
from a fixed origin 0, 6 is the angle botween the liie Or and a fixed line or axis through 0, and
o is the angle between the piene containing @ and a fixed plane drawn through the fixed axis.
The definition is illustzated in Figure 7. A set of Cartesian coordinates is also shown having

y

.

(’l o.“))

Figure 7 — Illustrating polar coordinates.
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the same origin, the fixed plane as the zy-plane and the fixed line as the z-axis. It is evident
that

z=rcos ¥, y=rsinfcos w, 2=rsinfsinw {6h, i, j]

Any point P can be displaced in such a direction that only ox'\e of the coordinates r, 8, « varies.
The three mutually perpendicular directions thus defined may be called coordinate directions;
the corresponding elements of distance ds are dr, r+d@ along a circle through Oz, and r sin 0d w
along a circle of radius r sin @ and in a plane normal to Oz. From [6f] the components of the
velocity in these three directicns ars

b 1 9o 1 b

= - =4 = == — 6k, 1
7 or’ r g0 '@ rsin 0 Jdo (6k, 1, m]

In other cases, cylindrical coordinates z, @,  are useful. Here & denotes distance
from the z-axis and « denotes angular distance around this axis measured from a fixed plane
drawn through it; see Figure 8. Il the Cartesian axe. are drawn so that » is measured from

the zy plane,
Yy=@CoSw, Z=@Sinw [6n, o)

The elements of distance in the coordinate directions are now dz, dw and Gdw, and the com-

ponents of the particle velocity in these directions are

¢ 3¢ ] 9¢
GG I T R (o, 0,1

In all of these equations connecting the velocity potential with the velocity, the sign
is that of recent textbooks un hydrodynamics. An older usage must be noted in which ¢ is
defined as ¢ = fr,:: g, ds. Ther all differences between values of ¢ are reversed in sign and
the signs in equations equivalent to [6b, c, dl, [6f, g, {6k, 1, m], and (6p, q, r] are all positive.

y
?
z
Figure 8 — Illustrating cylindrical coordinates. = y P
W
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7. THE LAPLACE EQUATION

In an incompressible fluid of uniform density the velocity potential satisfies a very
simple differential equation. If the velocity potential ¢ is substituted from Equations [6b, c, d]

into the equation of continuity, Equation {2b], there results

i e e —= =0 {7a}

This equation must be satisfied at every point throughout the region in whicih irrotavional flow
exists. It is known as the Laplace equaticn and is often written in the symbolic formy2s =0
whero 72 stands for the differential operator
2 2 2
2,97 ,9° .39
ozt oy* az?

The Laplace equation is encountered in many other branches of physics, such as
electricity, heat flow, and elasticity, and the properties of its solutions are well known 1112, 16
Because of the linearity of the Laplace Equation, its solutions possess the following useful
properties. If ¢ is a solution, so is C¢ where C is any constant. If b, and b, are two solu-
tions, ¢, + ¢, 15 another solution; the particle velocity corresponding to ¢ + ¢, at any point
is the vector sum of the velocities corresponding to ¢, and to ,. These statements may be
verified by suistitution in the equation. Finally, if ¢, is a solution, so is ¢, = db/dz or
d¢ /3y or ¢,/ dz; for, after subdstituting ¢, for ¢ in Equation [7a), differentiating with
respect to z, for example, and changing the order of integration,

3 91 32 9 2 A
9z2 9% dy? gz 5,2 dz

Thus dé,/dz is another solution of the Laplace equation.

The problem of determining the motion of a frictionless, incompressible fluid under
given conditions thus reduces to the problem of solving the Laplace equation subject to
certatn boundary conditions. Any solution ¢ of the equation represents a possible type of
irrotational flow in which the components of the velocity are given in terms of ¢ by Equations
[6b, c, d]. Since the density of the fluid does not occur either in the Laplace equation or :n
Equation [ta] expressing the usual boundary condition, each type of flow can exist in a fluid
of any density. So long as the motion is not too rapid, gases as well as liquids can be assumed
to move approximately as if they were incompressible.

Once the velocity at each point is known, the distribution of pressure may be found

from the pressure equation to be ovtained presently.

12
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8. SOME PROPERTIES OF IRROTATIONAL FLOW

The following properties of the irrotational flow of incompressible fluids may be noted.
More rigorous proofs of some of them may be found in Milne-Thomson’s Theoretical Hydro-
dynamics? or elsewhere.!?
a. The distance betweon two given equipotential surfaces corresponding to slightly differ-
ent values of ¢ varies in inverse ratio to the magnitude of the velocity ¢.
For, 8¢ = - q & 5; if 8¢ is constant, 53w L

b. The streamlines arc concave toward the side on which the magnitude of the velocity ¢
is larger.
For on the concave side of a streamline neighboring equipotential surfaces, boing per-

peadicular to the line, must converge, as at P in contrast to @ jn Figure 9a; hence, by (a), ¢
is greater.

c. The velocity ¢ increases in the direction in which the streamlines converge, and hence

is greater noar the concave side of an equipotential surface than near its convex side.

For, if the streamlines convorge in a certain direction, such as £S in Figure 9b, the
associated tube of flow diminishes in cross section in that direction; but the same volunie of

an incompressible fluid must flow across every cross section of a tube; hence ¢ increases in
this direction.

d. In any given region, the maximum velocity must occur at a point on the boundary. The
same is true of the minimum velocity unless it is actually zero.
For, suppose a maximum value of g occurred in the midst of the fluid, as at T in Figure
9c. Then g would decrease in all directions from this point. But then the tube of flow contain-
ing this point would have to flare in both directions from T by (c), and would also have to be

concave inward over the sides of the tube, by (b), which is impossible. The proof for 2 nonzero
minimum is similar.

3
3, $
\
9y
: .
R
Figure a = Figue b - Figure ¢ -

Figure 9 — Illustrating some geometrical properties of streamlines and equipotential surfaces.
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o. Within a single connocted region the streamlines must begin and end on the boundary.
Hence, 1if the boundary is entirely stationary, so is the fluid.

For, otherwise, closed streamlines would necessarily occur, and this 1s impossible
under the conditions assumed; since, in going around a closed streamline in the direction of
the flow, the velocity potential would decrease continually. and herce it could not rewurn to
its iratal value upon returning to the starting point. Vurthermore, no streamline can end on a
stationary boundary, since there the normal component of the velocity must vanish.

f. Che flow within any rogion is uniquely determined 1f the velocity is given, in magnitude
and in direction, at all points on the boundary of the region.

Ior, if two different distributions of velocity satisfying the given conditions were
possible, a third one would also be possible in which the velocity is the vector difference of
the velocities in the given distributions. In this latter distribution the velocity would be zero
at all points on the boundary; hence, by (d), the velocity must vanish everywhere. It follows

that the two original distributions of velocity must be identical.

g. Ina singly connected finite region, the flow is uniquely determined if the normal com-
ponent of the velocity is assigned at all points of the boundary.

The proof is similar to that of (f). The difference between two types of flow satisfying
the given condition would be another in which the normal component. of the velocity vanishes
over the boundary, so that no streamlines could begin or end there; herce, as explained under
(e), there can be no sweamlines, and the two assumed distributions of velocity must be identi-
cal.

In all cases, the word boundary may refer either to a physical boundary or merely to a
geometric. surface drawn through the fluid. Furthermore, except where the contrary 1s
specified, the boundary may lie partly or wholly at infinity.

It may also be noted that differentiation of Squations [6b, ¢, d] leads to the equations

—_— - — =0, -‘9—"3-59—“-_-0, du _0v_y, [8a, b, c]

dz Jdy dz dz dy Iz
These differential equations may be regarded as an alternative characterization of irrotational
motion; for it can be shown by means of a theorem known as Stokes’ theorem that the circula-
tion vanishes around any closed curve drawn in a singly connecte-! region in which Equations
[8a, b, c] aro satisfied. The three left-hand members of the equations are the components of
a vector, which is called invector analysis the curl of the particle velocity and in hydro-
dynamics is often called the vorticity.

From Equaions [8a, b, c] it can be shown, furthermore, that in irrotational flow the
motion of any particle is compounded of a motion of translation and one of pure strain. Ina
pure straining motion there are three mutually perpendicular lines through any particle of the
material which do not change their directions; these lines are the strain axes. In rigid-
rotational motion, on tho other hand, only one line through a given particle retains its

14
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direction, namely, the line parallel to the axis of rotation.

9. THE PRESSURE EQUATICKN FOR IRROTATIONAL FLOW

Let the external forces por unit mass be given by

Y=-92 y__98 ,__9Q (9%, b, c]
9z’ ay dz

in terms of a potential function Q, as is true for forces due to gravity; and let the fluid have
the property that its pressure is a definite function of its density., Then, if the motion is
irrotaticnal, the equations of motion for a frictionless fluid can be integrated.

On these assumptions, Equation [3c] can be written, after replacing u by -~ d¢/dx in the

first terin,

2
-..__.a‘b+u va_"+w aQ

7~ VI P P

~la
p dx
or, by means of Equations [8b] and [8c], after changing signs,

936 du_ 3y _,aw_ a9 _19°
gz 9t 6:1: dx dr da pdz

Equations [3d]} and [3e] become similarly

_— .

89 L ou_,ov_ 0w 90 _ 1%
dyot dy dy dy dy p dy

and
9 0p _,du_,0v_ 0w 39 _ 19

Jdz d¢ az dz az dz P 9z

Let these last three equations be multiplied through by dz, dy, dz and added; and let the time
¢t be held constant. Then the first terms give

o 0 96, gy 0 9% .4 0 "j’gd(ﬁf:)
dz d¢ dy dt¢ dz dt a¢

d -
In general, d :—quould contain also.a term dt(%(;g); but here it is assumed that dt = 0. The

next terms in the equations give in the sum

Jdu o g, - 1 2) d - d(_l_ 2)
dz+ua dy+uazdz az( 2 . 2u
The remaining terms give similar results. Thus the final result is
2 2 2\ d
d(ff) —d(l‘- J2 02 9.2
3t 5 *75 T79) ”
This can be integrated to give
dp 9 1 5
—=— gt - Q+F(t Sd
[2-2-1p-a.re foa)
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where 1/2 =y + v 4w

Hore fdp/p can be evaluated when the law of variation of p with p is known. The
intogration ‘‘constant’’ F(¢) must be regarded as an arbitrary function of ¢, for the mathemati-
cal reason that the integration involved only z, y, and 2, and also for the physical reason that
¢ itself contains an arbitrary ‘‘constant’’ which may be supposed to vary with the time. The
presence of this arbitrary term in ¢ limits the usefulness of Equation [9d] in the general case.

If the density is uniform and constant,

dp p
f—;:; + constant

and
~=—=-2¢2-Q+F(¢), [9e]

where the arbitrary constant in the integral has been absorbed in £ (¢). In this case the
pressure itself contains an arbitrary additive constant: for it is well known that a uniform
pressure p, applied to the boundary of ar enclosed mass of incompressible liquid merely
raises the pressure throughout by the amount p, without affecting the motion. To fix the
pressure completely, therefore, its value on the boundary must be known. This value then
fixes F (¢) after the arbitrary additive function of ¢ that occurs in ¢ has been chosen. The
equation thus obtained is very useful.

If the only external forces acting are those due to gravity, it is sometimes convenient to
simplify the last equation by considering the pressure to be made up of two parts, p=p_ +p,
where p_ is the hydrostatic pressurothat would exist if there were no motion and p; is the
dynamic pressure due to changes in velocity. Whea there is no motion, Equation [9e] gives,

with p_ substituted for p and F (¢) assumed to ko constant,

ps +pQ - cunstant. {of]
If, then, p is replaced by p, + p, in Equation [9e] and p, then substituted from Equation [91],
the result is

=24 F () [9¢]

where the constant in Equation [9f] has been absorbed in F (¢). In Equation [9g], p is some-
times written for p ;.

When the only external forces are gravitational, if the z-axis is drawn vertically upward,
X=Y=0,Z=-~g, where g is the acceleration due to gravity. Hence Q is a function of 2 only,
and integration of {9c] gives

() = gz + constant,

Dynamical units are to be understood in Equations [9e] and [9g]. The pressure p or p,
may be in pounds per square foot, p in slugs per cubic foot, ¢ in feet per second, and ¢ in
seconds. The potential & would then be in feet squared per second, since the dimensions of

& are those of length times velocity or L27r-1.
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10. THE BERNOULLI EQUATICH FOR STEADY IRROTATIONAL FLOW

If the motion is steady, the constant of integration in ¢ can be chnsen so that d¢/dt = 0.

Then F(¢) reduces to a constant, and the pressure equation [9d] can be written

d
7,—p+1q2+9=0 [10a]

9
-~

where (' is a constant. Similarly, if p is uniform and constant and if the pressure at infinity

or on the boundary does not vary with time, Equations [9e] and [9g] become, respectively,

P 1 2 - 110b]
7+—2"1 +Q=0,

Pd 1 5

T+E(] +Q=20C. [10c]

The value of C, which is not necessarily the same in these three equations, may be
found from the known values of the other quantities at some one point, such as a point on the
boundary.

In many problems, the motion at infinity is one of uniform flow and @ = 0. Then, if U
is the particle velocity and p_, the pressure at infinity,

Po 1

C=— += U2
p 2

and from Equation [10b], for incompressible fluid,

p (V2 - ¢?) [10d]

o]

P=Po=

It is impurtant to note that the pressure difference, p - p_, at any point depends orly upon the
rolative motion between the fluid at the point and the fluid at infinity; in particular, it remains
the same if a frame of reference is substituted relative to which U is zero. It is physically
obvious that p — p_ cannot be altered by a mere change of the frame of reference; and it is
easily verified that the .esulting changes in Uand ¢ are such that the difference U% — ¢2
remains unchanged.

These are various forms of what is commonly called the Bernouili equation for irrotation-
al motion. For any type of steady flow, whather irrotational or not, equations identical in form
can be abtained for any one streamline, but in general the constant may vary from one stream-
line to another. In irrotational flow the constant ¢ has the samo value for all streamlines.

The Bernoulli equation holds throughout any region, large or small, throughout which
the motior happens to be irrotational. The region may even surround one or more cylinders
about which there is circulation; irrotationality in the neighhorhood of each point of the region

is all that is required.

17




11. THE PRESSURE EQUATION FOR ROTATING BOUNDARIES

The foilowing special case may be ncted for reference. Suppose that incompressible
fluid 1s set into irrotational motion by the steady rotation of a solid boundary, internal or
oxtornal, the fluid being otherwise unbounded. Then the flow pattern will obviously be always
the same rclative to the boundary but at any point fixed in space variations will occur. The
distribution of values of the potential ¢ can be imagined to rotate with the boundary, but
otherwise to remain unchanged. Since the motion is not steady in space, the Bernoulli equa-
tion cannot be used. Lot the density p be uniforn.

Let 0 denote an angle of position about the axis of rotation and let the angular velocity
of rotation be w. Then that value ¢, of ¢ which, at time ¢, is at a point P is carried forward
by tho cotation during an interval dt to a point P’ at which @ is greater by d6 = wdt. At time ¢,
on the other hand, the value of ¢ at P“was

- b 70 - 3
¢-¢1+£de-¢, +w.a_.‘§dt.

Thus, during dt, ¢ changes at P’ by

b db
d¢=¢l—(¢l+w53d£)=-w?0dt
tience, at any fixed point in space,
9¢ 9¢
e —z 0 T 1lla
Y @ 30 @ qo [ ]

where @ donotes the distance of the point from the axis of rotation, and ¢4 = -(1/wY d¢4/90
and represents the transverse component of the particle velocity; see Equation [6r].
Thus Equation {9e] for the pressure p can be written, when the boundary rotates steadily,

P=p (0@ gy-Lq2-0)+p, [11b]
or, if Q =0, )
p=plw 5799-%-{12)+p0 {11c]
where p is either a constant or at most a function of the time.
These oquations can also b» written in terms of velocities relative to axes that rotate
with the boundary. The radial comonent of velocity ¢, *is the samic 2s ¢, the same omponent

taken rolative to fixed axes, but the transverse component is ¢4” = ¢g - @& Writing

g% = ¢ 1 g and then substituting ‘or ¢,

P =%p(w252 - q'z) +Po (11d]
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12. THREE-DIMENSIONAL SOURCES, SINKS, AND DiPOLES

Some important types of flow in incompressible fluid of uniform density will now be
discussed briefly in preparation for the detailed studies to be made in later chapters.

Suppose that incompressible fluid is flowing radially outward from a point P with a
velocity ¢ that is a function only of the distance r from P. Then, if a sphere of radius r is
drawn with its center ac P, a volume 47-2¢ of fluid flows outward from this sphere per se. .nd.
Since this volume must be the same for all sphores centered at P, #2¢g must be a constant, and
it is possible to write

9=— {12a]

where 4 is a constant. The volume of fluid flowing outward per second from P is then 4rA.
A velocity potential ¢ exists; for, if

At P, q is not defined and a singularity is said to occur. It may be imagined that there
is a source at P in which fluid is being created at the rate 4zA. In Lamb’s Hydrodynamics,
474 is called the strength of the source and is denoted by m; in Milne-Thomson’s Theoretical
Hydrodynamics,? the symbol m is used for A itself and is called the strength. If 4 is negative,
the flow is inward and a sink may be imagined to exist at P, in which fluid is being annihilated
at the rate 4z4. The term “‘source,” when not specifically contrasted with ‘‘sink,’” will be
intended in an algebraic sense, covering both sources and sinks. A flow of this type could be
produced by a sphere with fixed center whose radius varies with time.

To find the distribution of pressure in the fluid, substi.ute in the pressure equetion cr

Equation [9g] ¢ = A/r? and

Then

if for simplicity p is written for p;. Atr=e, p =pF(¢). Hence if p , denotes the pressure at
infinity (in excess of hydrostatic pressure), assumed uniform all round,

=__ 24 +p°° [120]

Other types of flow having a singulasity at P can bs obtained by differentiating Equation
[12b}, in accordance with the principle stated in Section 7. Thus, in Cartesian coordinates
with origin at P, replacing ¢ by ¢,,
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A Iy - Az
(@ + g% + Zz)l/z’ 9z

¢, -
(2:2 & 3/2 + 32)3/2

and dé,/dz is alsc a solution of the Laplace equation. Here z can also be replaced by r cos §
in terms of spherical coordinates with origin at P and the z-axis as axis. Thus, another solu-

tion of Laplace’s equation is (-u/A4) (3¢ ,/dz) or

u @ cos 0
2)3/2 2

é =

{12d]

(22 +y? +2 r

where p is a new constant.

The typn of flow thus defined is said to be due to a point dipole or double source at P,
also called a point doublet, because it can be produced by placing a source and sink of equal
strength close together and letting their distance apart decrease to zero while the product of
distance and the strength of the positive source is kopt equal to y. The line from which 0 is
measured is called tho axis of the doublet.

13. TWC-DIMENSIONAL FLOW

The flow is two-dimensional when there is ne variation of anything in & certain direction,
and when the component of the veloci v in that direction is everywhere zero. Thus, along any
line having this diroction, the pressure and the perticle velocity are uniform. Each fluid
particle rioves in a plane perpendicular to the direction of uniformity, and the motion is the
same in all of these planes. It suffices to study the motion in a single plane, which may be
taken as the zy-plane. Then the z-component of the velocity « is 0, and the components u and
v, like the pressure, are functions of z, y and perhaps the time ¢.

Alternatively, it is sometimes convenient to consider the fluid between the zy-plane and
a parallel plane at unit distance from it. This part of the fluid remains permanently between
the two planes, and its motion is typical of the motion of the whole.

Tor the two-dimensioaal flow of incompressible fluids it is convenient to define another
function known as the stream function. Choose a fixed line perpendicular to the zy-plane,
intarsecting it in the point 4, and a parallel line intersecting the <y-plane in P, as in Figure
102. Let the lines be joined by an open cylindrical surface parallel to z and having the lines
as two of its generators; this cylinder will intersect the 2y plane in a curve, as illustrated by
one of the curves in Figure 10a. Let & denote the volume of fluid that passes per second
across the part of the cylindrical surface thau lies between the zy-plane and a paraliel plane
unit distance away; let v be called positive when the fluid crosses in the positive direction
of rolation about A, or in the direction {rom Oz toward Oy.

The quantity & thus defired may be described briefly as the volume of fluid that passes
per second across any curve, per unit of thickness in the z-direction. Its valne must be the
same for all curves joining 4 and P, since no fluid is created or destroyed between the

2¢
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Figure 10a Figure 10b

Figure 10 — lllustrating the definition of the stream function 4.

rorresponding cylindrical surfaces. If 4 is held fixed, tnerefore, 4 1s a function of the coor-
dinates z, y of P, and also perhaps of the time, or o (2, y, £). This function 1: called the
stream function. Its dimensions are those of volume per unit time per unit of length parallel
to z, or L2T-1,

If t~= base point is moved from 4 to some other point B, then all values of ¢ are changed
by a fixed value reprcsenting the flow across B.4. Thus b contains an arbitrary additive con-
stant.

If the values of « at two points P, P, are ¢, and 4, the rate of flow across any curve
P,P,, as in Figure 10b, in the positive direction around P, per unit of length in the z-direction,
is ¥, ~¢,. If P; and P, lie on the same streanline, the rates of flow across AP, and across
AP, riust ne the sane, since there is no flow across a suwear:line. lleace & has a constant
value along any given streanline. The family of curves defined by ) = constant is thus the
set of streamlines, and the streaialines themselves can be identified by nieans of the
associated values of . It follows in particular that ¢ must have a constant value over any
stationary boundary, which is necessarily composed of streamlines.

Simple relations exist between the stream function and the particie veloeity. For, if P
is displaced an infimitesimal distance dir in the r direction, y increases by the flow across dir
or by vdr; whereas il P is d’'splaceu a distance dy in the y direction, dyy = ~udy, in view of

the convention as to the sign of : see Figure 10a. Thus

poo o O (133, b)
dy dr

Or, more generally, let dv//ds denote the space rate of variation of v, in a chosen positive
direction along any curve ~v.i on the zy-plane, and let g, denote the component of the
velocity normal to the .. taken positive ina direction rotated counterclockwise through

90 degrees from the positive direction uiong the tangent to the curve. Thus, if q, >0, the fluid
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crosses fram right to left as the curve is traced positively;

a see Figure 11, Then
3s i
3 qp = 5—3— {13c]
— The stream function exists for any type of flow in an

incompressible fluid, even when the motion is rotational.

If the flow is irrotational, then the velocity potential ¢
also exists, and the two families of curves, ¢ = constant and
Figure 11 — Hlustrating the W = constant, cut orthogonally, since the velocity at any point

relationship between the is perpendicular to a curve ¢ = constant through that point and

< N carint ) . " H
space rate of. “""‘.-"0“ of tangential to a curve ¢ = consiwant. Then also, as in [6b, ¢]
stream function d,‘ds

and particle velocity 7,. ad dd (13d, o}

Comparison of these equations with Equation (13a, b] leads to the following relations between

& and ¢
dd o dh Y

—_—=——, — = - (13f, gl
de dy Jy dx '8
The Laplace equation for ¢ or Equation [7a] becomes, in two dinmeansions,
2 92
P69 [13h]
9z2 dy?
and differentiation and subtraction of Equations [13f, g yields also the result that
2 2
RAUS A [13i)
ozt ay?

Thus in irrotatioral, two-dimensional flow the velocity potential and the stream function
are both solutions of the two-dimensional Laplace equation. Solutions of this cquation,
relotad as stated in Equations [13f, g], are called conjugate solutions or functions. If either
& or & is known, the cther can be found, except for an arbitrary constant, by integrating
Equations [13e, f)

The two orthogonal familses of curves, ¢ = constant and ¢ = constant, are called a flow
prttern. If closely spaced curves of both types are drawn, they divide the plane into small
areas approximately rectangular in shape; such a diagram is called 2 flow net. If the same
equal spacing is used for both sets of curves, the rectangles become squares; for, by the
defin:tions of & and +, betweesn two adjacent ¢ curves 56 = — g5 where 83 is the distance
between them, and similarly hetween two & curves 8¢ = ¢89, hence if |8¢| = |8¢1, 8s = LEI

This property of flow nets is sometimes made the basis of a graphical method for the
construction of an approximats flow net to satisfy given boundary conditions. The ¢ and &
curves are sketched in smoothly by estimation and are then corrected repeatedly while keeping

them in harmony with the boundary conditions, until they divide the area as nearly as possible

[S9]
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into small squares. The procedure was discussed in detail by Closterhalfen,?? and a machine
for use in such graphical constructions was described by Fdttinger,?3

Obviously v itself could be the velocity petential for another type of icrotational flow,
satisfying a different set of boundary conditions. The stream function to accompany it would
then be ~¢. For, if the new potensial and stream function are ¢’ = ¢, ¥'= - ¢, by Equations
{13f, g]

EYSINT VISR Y S Ve

oz  dy’ ay Jdz
which are simply Equations [13f, g] written for ¢ and « ‘and show that these functions stand
in the relation to each other that is characteristic of a potential and its associated stream
function.

Thus the two-dimensional types of irrotational flow occur in associated pairs, which
might be called conjugate pairs. At a given point, velocities in two conjugate flows have per-
pendicular directicns but equal magnitudes; in fact, the vector velocity in the sccond type is
merely rotated, relative to that in the first type, through 90 degrees in the counterclockwise
direction, or from z toward y. For, in the second type of fiow the cormponents are

. 9T A 9’ AU

e = — -, e e = e = 13§, k
v v ay ay u [ 1 ]

oz dz
by Equations [13a, b]; the magnitude of the velocity is thus ¢ = (¢ + v%)*, and the directions
arc as stated, as is illustrated in Figure 12.
All of the equations written down in this section are linear and homogeneous in the
dependent variables. For this reason it is easily seen that if ¢,, ¢, are the potential and
stream function for one type of irrotational flow and Doy Uy for another, then the sums,

b=, +d,, W=, +1
3 1 2 3 1 2

represent the potential and stream function for
a third possible type. In t'e latter type, which
is said to be formed by supecrposition of the
first two, the velocity as « vector is easily
s2en to be the vector sum of the two component
vector velocities. Again, both potential and

stream function may be multiplied by the same

constant.

Finally, if

v,

I
=7, Uy =-—=
ax JgzT

b4

Figure 12 - Relation between particle
velocities in two conjugate flows.




¢4 and v, are the potential and stream function for still another possible type of flow; for, as
was shown for & in Section 7, &, and ¢, will satisfy Equatiors [13n), {13i} and [13f, g].
Instead of z, y or 2 may be substituted in both derivatives.

it should be remarked that when the older convention mentioned in Section 6 is employed

for the sign ol the potential, the siream function # is measured by ihe volume of fluid crossing

a curve in the clockwise direction, so that in a given case differences in the values of % have
oppostte signs, and the signs before the derivatives in Equations [13a, b and {13}, k] are
reversed. The positive direction for ¢, in Equation {13¢] is likcwise reversed. The relation

between ¢ and s as stated 1n [13f, g], however, remains the same. The simplest way to

summarize the difference between the two conventions is to say that all ve'ocities are reversed

when a change 1s made from one to the other.

14. TWO-DIMENSIONAL FLOW IN MULTIPLY CONNECTED SPACES

in cases of two-dimensional flow, boundaries often occur which haves finite dimensions
in directions parallel to the planes of motion. These are called internal boundaries. They
have the physical form of cylinders of unlimited length and are represented on the zy-plane
by closed vurves, which may or may not be circular. The presence of an interns.i boundary
makes the space doubly connected; more generally, if two or more separate inner boundaries
oceur, it is multiply connected.

In irrotational motion, the circulation is required to vanish only aroun closed curves
which do not surround any inner boundary and hence can be contracted contiuwuously down to a
noint, in accordance with tne explanation in Section 5. An example is curve ¢ in Figure 13,
where .1 represents an obstacle with a boundary that the fluid cannot penetrate. Around a
curve that encircles A, such as DEF in Figure 13, the circulation may or may not vanish.

Let the positive direction along all curves that encircle boundaries be chosen in the
same direction; it will be convenient to adopt the convention that, as a point traverses such
a curve positively, its projection on the zy-plane eventually goes round the boundary
in the counterclockwise direction, or in the
direction of rotation from the r-axis toward
the y-axis. Then the circulation has the same
value for all clo~ed curves that encircle A
just once and do not enciele any other finite
boundary.

Fo show this, let NEF and GHK be two
such curvee, and introduce 4 connection G
between them, as illustrated in Figure 13.
Then the combined curve DEFDCKHGD,
traced in this order, can be collapsed con-

Figure 13 — Curves in a doubly connected
tinuously to 2 poin; to do this, the space.
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twice-traversed segment G is first separated into two parallel segments. Then the circula-
tion around this combined curve equals zero. But this circulation is the difference of the
circulations in the positive directions about DEF and GHK; for GHK was traversed in the
negative direction, so that its contribution to fg ds was reversed in sigr and the contribution
of G which is traversed twice but in opposite directions, cancels oui. Hence the circulations

round DEF and GHE are equal.

In the same way it can be shown that the circulation about a curve that encircles

several internal boundaries is the sum of the circulations around the separate boundaries.

If the velocity potential at any point P near A is now delined by
P
0

03:/(15(18

P

as in Section 6, its value for a path of integration such as PRP, in Figure 14 is casily seen
to exceed its value for a path such as P@P vy the circulation I" around 4. For, geonetricaliy,
these two paths together make up a closed curve encircling 4. Other paths may encircle 4 in
the negative direction, or several times. Thus, if & is the value for one path, other paths of
integration may give any one of the values

¢ +nl’
where n is any positive or negative integer.

The potential ‘s thus many valued in a multiply connected space; to each point P there
belongs an infinite number of values of &, spaced I" apart. The particle velocity as calculated
from ¢ is, however, single-valued, since all branches of the potential, characterized by various
values of n, have the same space derivatives.

If several internal boundaries are present, the potential is many valued in 2 more com-
plicated fashion. Inany case it follows from Equation [Gg] that in going around any closed
curve in the positive direction the potential decreases by an amount equal to the cirrulstivn
around the curve.

An alternative prodedure sometimes
adopted is to introduce enough imaginary
barriers extending to infinity so that, if «hese
barriers are never crossed by any path, the
integral defining & remains single-valued.
Such 2 barrier is shown at ST in Figure 14.

But then discontinuities in é may occur at the

imaginary barriers; and, if the velocity ata
point on a barrier is to be represented by

derivatives of $, the bamrier must bs moved

Figure 14 — Illuswating the definition of the
velocity potential in a doubly connected

temporarily to one side.

space.
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15. TWO-DIMENSIONAL OR LINE SOURCES, SINKS, YORTICES, AND DIPOLES

A two-dimensional source or uniform line source is said to exist on a line when the
fluid flows uniformly away at right angles to the line. In the diagram that represents the flow
in a particular plane, the line is represented by a point. By considering the flow across a

circular cylinder having the line as its axis, it is easily seen that, because of the assumed

incompressibility of the fluid, the velocity is
4

q =7 [15a]

where A is a constant, positive or negative, and & denotes distance from the line. The
volume flowing outward per unit time per unit length of the cylinder is thus 274; either this
quantity or A itself may be called the strength of the line source or sink. On the line itself
the velocity is not defined.

The corresponding velocity potential is

=-AIng [15b]
where In stands for the natural logarithm, since then » = - 9¢6/3@. It is impossible by adding
a constant in & to prevent it from becoming infinite at infinity; this complication in two
dimensions is sometimes annoying.

The line source can also be built up by distributing infinitesimal three-dimensional
point sources uniformly along the line. The constant 4 then represents twice the poini-source
strength per unit length of the line, if by source strength is meant the constant 4 in such
formulas as [12a, b].

The potential of a two-dimensional iine dipole can be obtained by differentiating that
of a line source. Since @ = (22 + y2)% in terms of Cartesian coordinates defined in a plane
parallel to the flow, a possible potential for a line source at the origin is

¢, =-Aln(z* + yH)%

By differentiating ¢, with respect to z and using the principles stated in Section 7, the
following solu‘ion of the Laplace equation is obtained, represonting a line dipole of strength
p:

pe

é = =pCos 0 (15c)
22 4 y2 ]

Here p is a constant and @ is a polar angle met.sured from the z-axis, so that cos 6 =a/(2? +y2)"h.

In using this formula, irrespective of its mode ot derivation, @ may conveniently be
defined as e angle between two planes intersecting aiong a fixed line, on which the line
dipole is sitezted, and @ as a coordinate representing perpendicular distance from this line;
one of the planes, from which 4 is measured, is fixed in nosition, the other rotates about the
fixed line. When the motion is studied in a plane parallei to the flow, the intersection of this
plane with the fixed plane is a line called the azis of the dipole.
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As in three dimensions, the dipole can be formed by placing two simple line sources of
equal and opposite strength close together snd allowing them to approach each other while
their strength increases without limit. It can also be formed by distributing infinitesimal
three-dimensional point dipoles uniformly along the fixed line, with their axes all parallel and
perpendicular to the line. The constant y then represents twice the sum of the throe-
dimensional dipole moments per unit length along the line.

In Lamb’s Hydrodynamics,* Section 60, m/2» is written for 4 and p/27 for p.

A third type of flow in which a line singularity occurs is one in which, again,

q = [15d]

e

but in which the stroamlines are circles having a common sxis, like the magnetic lines around
a long straight current. In this case, along any one of the closed streamlines there is
obviously circulation of magnitude I" = 27& (A/@) = 27 4; and it can be shown that I" has the
same value around any closed curve that encircles the axis. Around a curve that does not
encircle the axis, on the other hand, " = 0. Thus the motion is irrctational everywhere except
at points on the axis, where the velocity becomes infinite and is undefined.

Because of the resemblance of this type of {low to the motion in actual vortices, an
ideal line vortex is said to exist on the axis. Its strength is measured by the circulation I
around it. In actual “‘vortices’’ the central portion either is missing or is rotating moce o less
like a rigid body.

The corresponding velocity potential is discussed in Section 40.

The line dipole itself can also be interpreted as a vortex dipole, since it can be pro-
duced by allowing two vortices with equal and opposite circulations to approach coincidence
while their circulations increase without limit. The axis of the resulting dipole is perpendi-
cular tu the line joining the vortices.

16. AXISYMMETRIC THREE-DIMENSIONAL FLOW

Another important case is axisymmetric flow, in which axial symmetry exists. Each
particle of the fluid is confined to one of a set of fixed planes intersecting along the axis;
and, at every point of any circle whose axis is the axis of symmetry, the pressure and the
magnitude of the velocity have the same values and the direction of the velocity is equally
inclined to the axis.

In this case, also, a stream {unction exists, but it is somewhat different from that for
two-diniensional flow.

In any plane through the axis of symmetry, take sn arbitrary but fixed point 4 on the axis,
and any other point £ joined to A by any curve AP, as ia Figure 15. Consider the surface of
revolution generated by the rotation of this curve about the axis. It is evident that the volume
of fluid crossing this surface per second, taken positive toward the assumed negative direction
along the axis, is a function only of the coordinates of P; let it be represented by 27 ¢. The




stream function ¢ thus defined, oftor called
dé the Stokes stream function, represents the flow
between P and the axis taken per radian of
rotation about the axis.
/ As in two-dimensional motion, however,
= it is often convenient to relax the definition

somewhat by adding an arbitrary constant to .

A Axts r + lhe dimensions of ¢ are volume per unit time

or L3/t. In any plane through the axis, the

———— e

\ curves, ¥ = constant, are agair th: streanilines.
N As coordinates, take distance z along
N the axis measured in the positive direction, and
~ the distance @ from the axis, and iet the
~ corresponding components of the particle

) ] o velocity be ¢, and gz (Thus the 2- component
Fi ure 15 — lllusirnting the definition of the
stream function in axisymmetric
three-dimensional motion. are employed.) Then, if P is displaced a dis-

is denoted by u only when Cartesian coordinates

tance dz parallel to tle axis, the flow across
AP 15 increased by 2z& g5 dz, and this equals 2zdi. Or, if P is displaced a distance d&”

outward from the axis, the flow inincreased by ~ 27w 'q d@'= 2rdvs. ‘lence

1 9 1 9 (16
T e — —— A~ e a b]
“""%% 8%z ’
In a similar way it can be shown that
_19¢ (%]
7 @ on

where ¢ is the magnitude of the velocity and d¥¥/dn is the space rate of change of & in that
perpendicular direction which is obtained by a clockwise rotation through 90 degrees from the
direction of the velocity.

If a velocity potential ¢ exists, from Equations [6p, q]

b o)
T e T e
Thus & and ¢ are related by the equations
d / !
P19 %19 [16f, g]
dz @do J& @iz

It is to be noted that in the axisymmetric case ¢ and ¢ do not have the same dimensions.
Since r and @ are really Cartesian coordinates, and ¢ does not vary in the third direc-

tion, & will satisfy the usual Laplace equation in terms of 2 and @’alone. The differential

equation for & is found by substitutlag from [16f, ¢} in the identity, 324/92 95" = 926/ 95 dz.

28



Thus, when a velocity potential exists, ¢ and & are associated solutions of the two equations

¢ 92 LY 9
$,9% o, i(é;)+i(é_f’:)=o [16h, i]
(9372 052 éz\w dz 08’ @ 0w

A surface over which ¢ is constant, or a stream surface, is necessarily a surface of
revolution. A streamline may follow the axis up to a stagnation point, at which it divides into
a sheaf of streamlines which then diverge and form a stream surface. The distance between
two given stream surfaces for slightly different values of v varies as 1/(&¢), as is evident
from Equation [16¢].

The older convention as to the signs of ¢ and , mentioned in Sections 6 and 13, has to
be recognized again in .z present connection. According to it, the signs before the derivatives

would be reversed in Equations {16a, b] and [16d, e], but not in Equations [16(, g], and the
direction for dv7/dn would also be reversed.

17. KINETIC ENERGY OF THE FLUID

A useful formula in terms of the potential can be obtained for the kinetic energy of the
fluid. The following simple deduction may be of interest; a more rigorous proof is given in
Milne-Thomson's book.2

Let the {luid be homogeneous and incompressible, and let it be moving with zero
circulation about all closed curves. Suppose, first, that the region is enclosed within a moving
finite boundary. Then the entire region can be divided up into slender tubes of flow, such
that the boundary of each tube consists of streamlines. As illustrated in Figure 16, each tube
must start and end on the boundary, for the reason stated in Section 8.

The kinetic energy of the fluid in unit volume is (1/2)pg?; hence the energy in a single
tube can be written

5T =f_;.pq2 (54) ds [17a]




where ¢ is the velocity, 84 is the cross-section of the tube and ds is an element of distance
along it, taken in the direction of ¢, so that §4 ds represents an element of volume. But pgéd
ropresents the mass of fluid that passes a given cross section of the tube per second and 1s
constant along the tube, since no fluid crosses its sides. Hence p ¢54 can be put in front of
the integral sign. Furthermore, ¢ds = -d¢ in terms of the velocity potential ¢, by Equation
{6f]. Hence

8T=_;.pq5qud =-%qu‘Afdd> =-;-pq8A(¢,,-</>o) (17b]

where ép and d’O denote values of ¢ at the ends of the tube. Now let 55 denote the element
of area on the bounding surface that is enclosed by the tube, and lot ¢, be the component of
tho vui~~ity normal to 8S, taken positive toward the fluid. Then, at the end P where ¢, is
positive, either ¢85S or ¢ 54 represents the rate at which fluid is flowing away from the
instantanenus pesition of 8S; hence at this end ¢4 = ¢, 8S. At the other end, where ¢, ie
nogative, ¢, 88 = - ¢85 A. Thus

1
8T =—2-p (o q, 58)p + (¢4, ‘SS)Q]

Summation of this expression for all tubes gives for the total kinstic energy
Tn—épf¢qnds=—%pj¢j—q;ds, {17¢]

in which d§ stands for an element of area on the bounding surface, whereas ¢, re, -esents the
component of velocity normal to the boundary, taken positive toward the fluid, and equals
-d¢/dn by Equation [6f], where ds is replaced by dn, representing an elementary displacement
away from the boundary and along the normal. The integral extends over the entire boundary.

For two-dimensional motion, let T, denote the kinetic ennrgy of the fluid between two
planes drawn parallel to the planes in which the particles move, and unit distance apart. The
integral in Equation [17c] may then be taken only over the included part of the boundary; and,
since the motion is the same in all planes, dS may be given the form of a strip of unit length
and width ds, where ds is an element of distance along the curve representing the boundary in
a typical plane. Thus, provided there is no circulation,

T, =_;p $6q,ds = —%p§¢ gg’% ds =3 pggdu [17d]

ae

Here the curve is assumed to be traversed with the fluid lying on the left; d¢/dn is the space
rate of change of ¢ toward the fluid along the normal to the boundary, and the last expression
results from Equation [13c] and the relation (d¥/ds)ds = di).

If circulation is presen’ the formula for T, must be modified. In the case cf a station-
ary cylinder inside a stationary cylindrica. shell, only circulatory flow is possible, and the
tubes of flow are all closed on themselves. Here, in Equation [17b], P and @ coincide and
ép - by =1I", the circulation, which is vhe same for all tubes: also, Zg44, summed for all
tubes bc;twoen two planes unit distarce apart, equals y, — & _ where ¢ is the value of the

stream function on the shell and & its value on the enclosed cylinder. Hence in this case

30



Ty =2pl (b, - 6,) [17c)
It the cylinder and shell are in motion, it is only necessary to superpose upon the
circulatory flow F, as just described another flcw F| having s single-valuod potential ¢, such

as is caused by the motion of the boundaries when I" = 0. The kinetic energies associated
with these two flows are simply additive, giving & total of

T =-,1;pf<b, g, 48 +7}PP (Uas =¥y, (el

whore the first integral oxtends around both shell and cylinder and ¢, is the stream function
for F, alone. For, if at any point in the fluid the particle velocity due to ¢, has a component

q,, normal to the ditection of the velocity ¢, due to F,, and a component 91p parallel to ¢,,
then

02 = qy0 + (44, + 950 = 4,7 + 4,7 + 24,0,

If, now, p gy, 9, 84 is integrated along any tube of F,, just as p ¢*/2 was in Equation [17b],
pq,94 is again constant, and 9|pd‘9q = — (change in ¢,) = 0. Thus the product term 9192
contributes nothing on the whole to the kinetic energy.

If several cylinders are present incide the shell, the flow car be resolved into £ and
a number of circulatory flows, in each of which there is the same circulatioa abuut all paths
enciccling a certain one of the cylinders once and zero circulation about all paths not en-
circling it. Then the argument can be extended to prove that the total kinetic energy is
simply the sum of the energios associated with each of these component flows.

In the azisymmetric case, the element of area dS may take the form of a ring cut out of
the bounding surface by two neighboring planes perpendicular to the axis; see Figure 17. The
width of the ring is the length ds of the arc

that is cut out by the planes from the curve Bountay

——

representing.the boundary on a typical plane -
through the axis, and its perimeter is 2nroy

where ¢ denotes distance from the axis; hence

its area is dS = 2rods. Thus, from Fquation

{17¢], Axis of Symmetry

T=apf¢q,dS=npfddy (17g]

after substituting dS = 27 @ds, ¢, = (1'®)
oy/on from Equation [16¢], dyy/dn = d¢./ds,
and (Jy/ds) ds = di.

v

Figure 17 — Illustrating the kinetic energy of
the fluid for an axisymmetric surface.

These formulas can all be shown to
hoid also for an infinite mass of 1luid surrounding a moving irternal boundary, provided the
velocity vanishes at infinity and provided there is no circulation. Here the intogral is taken

only over the internal boundary.
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Two-dimensional circulatory flow aboul an interral boundary immersed in infinite fluid
leads to an infinite value for T,. This circumstance, althcugh inconvenient, ioes not invali-
dato other conclusions from the theory, since a cyliader of (nfinite length is in any case an
abstraction introduced in order to simplify the matnen.atics.

18. UNITS OF MEASUREMENT

In all cases, a consistent set of dyn.amical units is assumed to be employed. In using
each formula, any unit of length may be used, bu. the same unit must be used for all linear
dimonsions, the square of that unit must be used for areas, and the cube for volumes. A
common unit of time must be employzd for all velocities and accelerations.

If forces are measured in puunds, time in seconds, and linear dimensions in feet, then
pressure is in pounds per square foot; mass is meesured in slugs, or pounds times seconds

P

squared divided by feet, and equals weight in pounds divided by the acceleration « “ gravity or
by 32.2; density is in slug s per cubic foot; energy is in {aot-pounds.

If forcas are measured in pounds and time in seconds, but linear dimensions in inches,
then pressure is in prunds per square inch; mass is in pounds times secouds squared dividud
by inches and equeis weight in pounas divided by 386, which is the acceleration due to
gravity expressed in inches per second squared; density equals pounds per cubic inch divided
by 336; energy is in inch-pounds.

The velocity potential has the dimensions of velocity multiplied by distance; hence it
will be in feet squared divided by seconds if lengths are expressed in fuet and time in seconds,
or 12 inches squared divided by seconds if inches are substituted for feet. The same units
apply to the circulation as to the velocity potential.

Angles may always be measured in radians, and this unit is always understood when an
angle is added or equated to a quantity that is not an angle, as in Equation [138f°] in Section
138: this holds whether the angle is represented by a single symbol, such as 8, or indirectly
by a symbol such as sin—!. In equations between angles, like Equation [88b}, or when a
trigonometric funclion such as sin 0 is indicated, degrees may be used instead of radians.

it may be remarked that the symbol VP will be used to denote the positive square root
of any expression P whenever P represents a positive real number; and such angles as sin~ Iy
ot tan=!2z will be understood to be in the first quadrant whenever z is so limited by the circum-
stances of the case that this interpretation cannot fail. Otherwise these symbols are to bn
interpreted as many-valued except insofar as a special rule is stated for their interpretation.
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CHAPTER 1l
THE USE OF COXPLEX FUNCTIONS IN HYDRODYNAMICS

In two-dimensional hydrodynamics extensive use is made of functicus of a complex
variable. In this chapter, therfore, the mede of application of the theory of complex variables
in hydrodynamics will be discussed, and a summary will be included of the principal relevant
parts of the mathematical theory.

For convenience of reference, a shoct table of formulas pertaining to the iryperbolic
functions is appended; and some useful series are also listed.

19. COMPLEX NUMBERS

The so-called imaginary numbers were invented in order to solve ceriain algebraic
equations, such as 2 = - 1. A solution of this equation is z = ¢, where ¢ is a symbol having
the property that i2 = ~ 1. In other respects % is assumed to behave like a real number, Ob-
viously i3 = 42 = -4, 4% = (i2)2 = 1, 1/¢ = - i. The product of ¢ by a real number is called an
imaginary number,

The sum of a real number and an imaginary number is called & complex numb~r; it can
be written

z=z+1iy
where z and y are real numbers.

'The number z* = ¢ ~ iy is formed from z by changing the sign of the imaginary part and
is called the complex conjugate of 2. It is often denoted by z.

Complex numkers are conveniently represented on a plot called the Argand diagram.

In this plot the real part. z is plotted as abcissa and the imaginary part y with ¢ omitted is
plotted as ordinate, as in Figure 18. Either the voint (z, y) or the vector drawn from the
origin to this point may be regarded as representing the complex number.

In labeling pointe and lines on such

y
diagrams, it is convenient sometimes to use

. fzgy)
specia! symbols representing geometrical
quantities only, end sometimes to use sym-
bols that stand for numbers, real or complex. P
Thie leads to no difficulty in spite of the {

logical difference between geometrical mag- -0

nitudes on a plane and complex aumbers.
It is often converient to express a

complex number in terms of the polar co- N a2

ordinates Figure 18 — Argand diagram.
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rave? +4220, g=tan~ty

&2
The geometrical significance of r and 6 on the plot is shown in Figure 18. Here r is called

amplitude, or sumetimes the argurieit, of 3; it is denoted by amp 3, or arg 2.

The amplitude is multiple-valued, since if 6, is one value, another possible value is
0, + 2nr where n is any positive or negative integer. A complex number is completely speci-
fied when its modulus and amplitude are given; for, in terms of r and 6,

2=z +ty=r{cos 6 +isin @)
In referring to the amplitude, however, it is often necessary w specify which of its many
valuey is meant. The value of the amplitude @ such that
-7 <0 : 7
is called its principal value; this value is often .acitly understood. It should be carefully
noted that no ambiguity attaches to the value of the complex number itself; the ambiguity
attaches only to its polar representation.

Numbers for which r = 1 are reprozented on the diagram by points iying on the unit
circle, or a circle about the origin of radius unity.

Two complex numbers are equal only when their real parts are equal and their imaginary
parts are also equel. For this reason every equation between complex numbers is equivalent
to two real equations, one containing the real parts, and the other the imaginary parts with
omitted. Equal complex numbers have equal moduli, and their amplitudes can differ only by
an integer multiplied by 2x.

In the diagram, the sum of two complex numbers is represented by the vector sum of
the vectors representing the two numbers, as in Figure 19. For, if

3y =z +1Yy, 2, =T, + 1Yy,
then

2y +2y =2 + %y +1 (Y +Yy)
It should be noted that the amplitude of the sum or difference of two numbsrsfis not uniquely
fixed by an assignment of the amplitudes of the two numbers; it is partly arbitrary and must be
separately chosen if needed.

The product, on the other hand, has nothing to do with the ordinary vector products of

the corresponding vectors. Multiplication and division can be dope in cartesian form, thus:

.
3,8, = 2,&) ~ Y ¥y +T(21¥, + Z5¥1)

LS I S U e T4 U W R L s L
2

2 %2ty 224yl 2t +y)t
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In the latter formula the separation of the

quotient into re.! and imaginary parts has ’ 1t
been effected by tho usual and important 3,

device of ralionalizing the denominator, that

is, both numerator and denominator ara multi- %,

plied by the complex conjugate of the de-

nominator or ¥, ~ 1Y,
Substitutior f

Z;=r co86, y =r, sind,,

Figure i9 — The addition of two complex

z, =7 co3 @ = £, sin @
2%72 20 Y2 =Ty 2 numbers 2, and 2

.
gives, after some trigonometric substiiutions,

2,2, = 1,1, [cos (6, + 6,) +isin (4, +6,)]

1.0 [cos (6, - 6,) + isin(g, - 6,)]
’5; ';.; 1 2 1 270
Thus the modulus of the product is the product of the moduli of the factors; and tne amplitude
of the product is naturally obtained as the sum of the amplitudes. Similarly, the modulus of
the quotient is the quotient of the moduli; whereas the amplitude of the quotient may be taken
to be the difference between the amplitudes of numerator and denominator. This convention
as to amplitudes of product and quotient will be retained throughout. An example is iliustrated
in Figure 20.

Multiplication of a complex number by i
i merely increases its amplitude by #/2, oc
rotates the representative vecior on the dia-
gram counterclockwise through /2. Muitipli-
cation by ~¢ decreases the amplitude by »/2
and rotates the vector ciockwise.

The following formulas may be noted:

32% = (2 +iy) (2 — fy) = 2% + y? w1?;

B34+2%m2, 2-3%=2iy;

15"] = |2|" for real n, 3,3, = |2,]]3,1;

ley/3,] = 12,112,

Figure 20 — Illustrating the product and

quotient of 2, and 2,
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20. SOME COMMON FUNCTIONS OF z

Functions constructed by means of algebraic processes, perhaps with the addftion of
the process of taking a limit, can be taken over at once from the ficld of real numbers into the

complex field. It is convenient to begin with certain lranscendental functions defined by
means of series.

In the dofining series

X _ 2:2 23 0:4 % «
e _1+z+2_!+-3—i+—!—.... [20a]
substitution of 6 for z gives
i0 _ 02 .68 ot .
e =14+ 10 _é—!_ ~1 3'—! +.IT!- [ZOb]

Comparison with the series for sin @ and cos 6, which are stated in Equations [33b, ¢] shows
that the following important formula holds:

¢ - cos g +4sin@ [20c]
Thus
. . 4.
eiM/2 24 e=M/2 g ¢Mo_1

It follows that any complex number can be written in the alternative forms

2=z +iy=r(cos @ +isind) =reil
Its conjugzaic 1s
2*=2~ty=r{cos § -ising) =re~i0

Two other useful functions are the hyperbolic sine and cosine:

. 21 X _ Xy _ 234_225 .277

smh:z:—_2.(e e‘)~:c+§—! SRS TR (20d]
ol v mmy 22 g% 26

cras:.z—E(e e )—1+—2!+——4!-+—-6!+... (20e)

From the series it is easily verifiad that
sin (2y) = < sinh y, cos (iy) - cosh y,
sinh ({y) = i 3in y, cosh (iy) =cos y

Finally, writing 2 = re‘0 and In for the natural logarithm,

Ina=lInr+i6=§ In(z? sy +itan—1Y

Here In r or In(2? + y?) is to be interpreted as the ordinary real logarithm. Thus In 3 is
many-valued. Its imaginary part has an infinite number of values spaced 2x7 apart, namely,
written in torms of any one of them 0, i0 + 2z%, i0 + 4ni ..., 10 — 2nd, 10 ~ 4ni ... Even il
2 = z and is real and nositive, for complete generality In 2 = In 2 = (In 2) real + 2zni, where
n is any integor, positive or negative.
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21. POWERS OF z

Writing 2 = re i
2P o phgind r*(cos n@ + ¢ sin n6)

by [20c]. If n is an integer, positive or negative, 2" is single-valued; in particular, 20 = 1, as
for a real number. For nonintegea! n, 2” is many-valued, because of the ambiguity of 4.

al/2 2 172 [cos(.% 0)+ g sin»(é» 8)]

But, if @ is replaced by 8 + 2mz where m is an integer

For example:

\

812 . (12 [cos(.}). 0+ mn) ) sin(.% 0+ mn):,

<

If m is even, the expression in brackets reduces to cos (1/2 ) + ¢ sin (1/2 6) and the same

value of 2%/2 is obtained as before. If, however, m is an odd integer, positive or negative,

/2 . _ W1/2 1 . 1
2 » [cos(E 0)+zsm<.2.0)]

Thus, as for a real number, 21/2 has two values, each the negative of the other; see Figure 21, .

Similarly, 21/3 has thcee values, with applitudes spaced 27/3 radians apart; and, in
general, if % is a positive integer, 31/ % has k different values with amplitudes spaced 2x/k
apart. If n is not a rational number, that is, the ratio of two integers, 2" has an infinite number
of values,

In working with many-valued functions
such a3 ln z or 2%, the value that is to be
employed for amp 3 must be clearly established. Y
If possible, amp 2 is usually so chosen that
the given function varies continuously as z
is allowed to vary through such sets of values

as are of interest, and is also continuous with

the same function as ordinarily understood when oL
pr 1 o
z becoines real and positive. Thus, for real 23 ,
. . 2 —
2> 0, In 2 is made to become the ordinary real 3 z

In 2z, and 27" is real and positive.
) P

Special care is needed when a more

M s
.

complicated function of z is invoived, as, for z

X

example, in In [(3+a)/(2+d)]. Every sum or 2
difference 1cpresents a new entity for which a
special rule must be adepted for the determina-

tion of its amplitude. Algebraic changes are

Figure 21 - The various values of 31/2 and 2!/3,
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trearherous; for example, In (22/(~2)} # In (~2), even In {1/(- 1)] £ In (=1), if the same rule is
used for amp (~2) or smp (~1) in voth places. The safest procedure Lere i3 to calculate In 2

from the amplitudes and absolute values of the separate factors.

22. REGULAR FUNCTIONS OF A COMPLEX YARIABLE

If, in ths complex number, 2 = z + iy, z and y are allowed to vary, z becomes a complex
variable. If a value of another complex varinble w is associated by means of some rule with
each value of 2, then w is a function of 2, It is also possibie to cregard w as a complex function

of the real variables z and y, of which ity «-a] and imaginary parts are likewise fuactions. Thus
w = f(2) = g (2,¥) = & (z,¥) + LU (2,y) [22a)

where ¢ and ¢ are real functions of z and y.

Some functions of z are single-valued, thac is, there is only one value cf the function
associated with each value of z; others are many-valued, A function which, at all points within
a cortain region on the z-plane, is both single-valued and differentiable, is said to be regular
ot analytic or holomorphic within that region.” Such a function is also said to be regular or
analytic or holomorpnic at any point in the intorior of the region. Many functions are regular
except at certain points called singular points,

In dealing with many-valued functions, a particular branch of the function can often be
define’] so that, taken by itself, it is regular within a certain region. Thus, if 2 = re i ang
0 is kept within the range -7 < 0 < =, In 2 is an analytic function of 2, except where ¢ = r, since
st such points In 2 cannot be differentiated without overstepping the bounds set for 6.

It can be shown that regular frunctions necessarily posses derivatives of ail orders.The
reason for this special behavior lies in the fact that a point on the z-plane can be ap-
proached from many different directions. Thus, in the formula

af lim  Af

dz Az -0 Az
if 2 is a real variable, Az can vary only in magnitude, wirersas if 2 is a complex variabie the
wicremont Az may vary also in amplitude, or ix. the directior of the representative vector on the
diagram; nevortheless the limit is required to have a fixed value, real or complex. This re-
quirement imposes a severe restriction upon the benavior of the function. s
The existence of s derivative with respect to z requites, in fact, that certain differential

eque“ions in terms of z and ¥ must be satisfied. Considx

[(2) = [(z+iy) = p(2,9) + i ¥ (2,9}
where ¢ and ¢ are real. Regarding f(2) on the one hand ax a function of z and on the other hand
as a function of z and y, by the ordinary rule for the dif{ rantiation of a function of a function,

sSome writers call a function snalytic with:n a region when it has ¢ + properties stated except at a Linite number

of singular points,
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dz gz ay
or
G L 0¢ ;90 ;04 22b)
dz oJr oz dy dy ’

and, equating real and imaginary parts separately in this last equation,
- g'f %_ -9 [22¢,d)

These equations are known as the Cauchy-Rivmann relations. They hold necessarily
whorever f(2) is differentiable; and it can be shown that they guarantee the existence of a der-
ivative with respect to z wherever the derivatives of ¢ and ¢ are continuous functions of z and y.

From [22b] and [22¢,d] it follows that

2 2 2 2
AR RCRC) =8

where | | denotes as usual the absolute value.

If w = f(3), then 2 = F (w) where F denotes another function known as the inverse of
the function f. If f(2) is a regular function at eny point 2, so is F (w) at the corresponding

dz _{dw)"!
dw \dz

23. CONFORMAL REPRESENTATION OR KAPPING

value of w. As ir real variables,

Assume that 3 = 2 + iy
and

w=f(a)=¢ +i {23a]

]

where f(3) denotes & regular function of 3 and ¢ and ¢ are real functions ¢ (2,y), ¥ (z,¥).
Suppose that the values of w are plotted ot tha same plane with those of 3, with a common real
axis. Then the transformatior from 2 to w displaces each point on the plane, representing &
value of 2, into another position where it represents a value of w. Curves are displaced and,
in general, changed in shape.

Often, however, it i3 more convenient tc plot w on a separate plane called the u-plane.
Then, to each point or curve on one plane there corresponds a point or curve on the other. The
configuration on the z-plane is said t¢ ve transformed into that on the w-plane, or to be repre-
sented by it, by means of the transformation w = f(3). A diagram on the w-plane can be re-
garded as a kind of map of the corresponding & diagram. The comparison is facilitated if the
two planes are thought of as parallel, and with parallel axes for real and imaginary numbers.

Correaponding curves on the two planes will usually differ both in linear scale and in
direction. Let 2 undergo a small increment 5z along a curve, as from P, to P, in Figure 22.




~>

Then w will receive a small increment @, @, or ,
5w =S¥ 5,
dz

{lere dw/dz and 2 are complex numbers; they can be written

40 _ pei® 52 = |5z] ¢'8
dz
in terms of real numbers R, a, 182 and 8. Then

duw = R|oz) e B+

Suppose that R # 0 so that dw/dz £ 0. Then this last equation shows that the line
element 3w cun bo formed out of the line element §2z by first stretching ot shrinking it in the
ratio represented by &, or by the modulus of dw/dz, and then rotating 1t through the angle a,
which is the amplitude of dw/da.

Thus the vector representii;g dw makes with the axis of reals on the w-plane an angle
greater by o than the angle that the vector representing 52 makes with the real axis on the
z-plane; see Figure 22. Any other line element at P,, such as P, P,, is changed in scale in
tho same ratio and is rotated through the same angle and in the same direction. The derivative
dw/dz can be thought of as an operator that transfarms the line elements in this manner; it
stretches the lc.al aroa in the ratio R and rotates it through the angle « .

It follows that, if the two curves interesect at an angle y on the z-plane, the transformed
curves will intersect at the same angle y on the w-plane. Furthermore, the angle is not turned
over; a rotation in the same direction through an angle y swings the tangent from one curve to
the other on either plane. Thus a transformaticn by means of a regular function f(2) completely
preserves tho angles between intersecting curves at all points at which df/dz # 0. Infinitesimal
figures also keep the same shape, although they may be changed in scale and rotated through a

certain angle, without being turned over.

» 4 2 y
Y y

wd

P

Figure 22a Figure 22b

Figure 22 — Illustratior of conformal mapping.




A transformation or representation which preserves angles and the shape of "afinitesimal
figures is called isogonal; if the angles are also not turned over, it is called conformal. Mer-
cator's projection represents a ccnformal mapping of the earth’s surface on a plane.

A figure of finite size, hovever, dovs not usually retain its shape under & transforma-
tion, since the change of scale and <he rotation are usually different at different points, be-
cause of variation in the value of dw/dz.

The angle between two curves may fail to be preserved if they intersect either at a
singular point, where df/dz does not exist, or at a point at which df/dz = 0.

it should be noted that as §z is rotated in direction, by changing its amplitude, 5w
rotates in the same direction, and by an equal amount. Hence, as the z-point traverses a curve
in a certain direction and the w-point traverses the corresponding curve on the w-plane, the
area on the left-hand side of une curve corresponds to that on the left-hand side of the other,
and the area on the right of one to the area on the right of the other. For example, in Figure 23,
rotating 5z as shown off tho curve and toward the area S causes Sw to rotate toward the area T';
this shows that points lying near the curve and in § transform into points in 7. Similarly,
nearby points in U transform into points in V. This rule is very useful in the study of con-
formal mapping. -

The transformation can also be viewed from the inverse standpoint, as a mapping of the
w-plane on the z-plane by means of the inverse transformetion,

2z = F(w)

where F is the inverse function obtained by solving Equation [23a] for z. Then

=z (b)) Y=y (D)

Two families of curves on the z-plane that are of particular interest are those defined
by & (2,y) = constart and ¢ (z,y) = constant. From the conformal property of the transformation,
it follows that these two families of curves intersect orthogonally, wherever dw/dz is finite
and not zero, as illustrated in Figure 29, page 48. For, this is obviously true of the corres-
ponding curves on the w-plane, which are straight lines parallel to the axes. The orthogonality
can also be verified directly from Equations [22b,c].

g
<
fea

N\
\xf ,

\
v 1

Figure 23 — The correspondence of regions adjoining a curve 1 conformal mapping.




The values of ¢ and of ¢ that are thus associated with each point on the 2-plane can
bo employed as curvilinear orthogonal coordinates on that plane. Thus each regular transfor-
mation furnishes in ¢ and ¢ a spacial set of orthogonal coordinates.

If w = f(2) is a many-valued function but such that any one branch of it, taken by itself,
has a unique derivative, then each branch maps an area uf the z-plane onto the w-plane, inde-
pendently of all other branches.

Finally, a device pointed out by Maxwell may be mentioned that is sometimes useful in
drawing the curves. Suppose the curves, ¢ = corztuat, are to be drawn, and ‘hat ¢ is the sum
of two terms:

U (2,9) = f(2,9) + 9(2,¥)

First draw the two sets of curves, f(z,y) = constant, g(z,y) = constant, using the same equal
spacing for the constant values of f and g. These curves divide the plane into approximate
parallelograms. Then it is casily - een that curves, ¢ (z,y) = constant, for equally spaced
values of ¢, pass through opposite corners of these parallelograms as illustrated in Figure 24,

9Is

Figure 24 — Maxwell’s censtruction for curves defined by the sum cf two functions.

24. EXAMPLES OF CONFORMAL TRANSFORMATIONS

(1) Coasider first the linear transformation

w=42+B

where A and B aro fixed numbers, perhaps complex. Let 4 = a + ib wherg a and b are real.
Then
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. itan—"(b/a)
BYo g myfa2+b2 e
dz

Since dw/dz does not vary from point to point of the 2-plane, even finite figures will transform
conformally under this transformation; their linear dimensions, however, will be changed on the
w-plane in the ratio /a2 + 52 and they will be rotated, relatively to the real axis, through an
angle equal to amp 4 or to tan™1(d/3). They will also be displaced in the direction of the
vector representing B.

(2). Another interesting transformation is the inverse transformsaiion
=1
2
or

- if i0
wxle y & = 1€
r

The transformation from the z-plane tc the w-plane may be imagined to be made in two steps.
First, let oach point P at r distance from the origin of z be moved o a position P’ lying on the
same radius from the origin but at a distance 1/r; that is, each point is displaced to its inverse
point in the unit circle, r = 1. Such a geomstrical transformation is called inversion with re-
spect to the circle. It can be visualized by imagining the plane to be turned inside out while
the unit circle stands still. Then lat each point be moved to its mirror image in the real axis;
this changes the sign of §. Thus the inverse transformation is equivalent geometrically to
inversion in the unit circle plus a reflection in the real axis. These two steps may be taken

in either order. The changes may be imagined to be executed on the z-plane, which is then
rechristened the w-plane; sse Figures 25 and 28.

I8

-

Figure 25 —~ The transformation w = 1/2 Figure 28 — The transformation v = 1/2.
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The extarior of the unit circle on the s-plane is thus mapped onto the interior of this
cirele on the w-plans, and vice versa, Radial lines trangform into radial lines with reflectien
in the real axis.

It is easily shown that & circle passing through the origin transforms into a straight line
not paasing through the origin, whereas any other circle transforms into a circle. If the circle
is contered at the origin, a0 is the transformed circle, but thay lie in inverse pesitions with
respect to the unit circle.

It is gufficient to prove these statements for the inversion. Referring to Figure 27, for
P on a given circle C,

t2+42~8 hr cos 6 = a2.

The result of substituting r ~ 1/r, where 7, is the value of r at the inverse point P, may be

written A2 hry a2
7 —— I S
£+ 2 -2 cos @ =
1 (h2 _a2) h2-q2 (];2 _a2)2

which lecates P, similarly on anotner fixed circle. If & =a = b as for £ “in the figure,
r=2bcos ¢, r, cos € =1/(2b) where 7, = 1/r, so that P, is located oi. the line ST.

The point 2 = 0 is a singularity to which, in strictness, the transformation does not
apply. It is often convenient, however, to speak of a single *‘point at infinity.’’ If this is
dona, it can be said that the transformatior. w = 1/2 transforms the point 2 = 0 into the point
© = oo, If z i3 aliowed to approach z = 0 in a certain direction, w recedes toward « in a cor-
responding direction, and vice versa. If z gces around 2z = G along a cutve of very small
diameter, w goes around w = « along a curve on which | w | is everywhere large, and vice versa.

Tiie transformation w = 1/2 is single-valued in both directions; any point of the z-plane
is transformed into a definite point on the w-plane, and the inverse transformation 3 = 1/t
tzansforms any voint on the w-plane inwo a definite poini on the z-plane.

Further formulas for this transformation will be found in Section 37.

The most general transformetion that transforms all lines and circles into lines or circles
is the bilinear transformation, sometimes called linear, or

L 83+b
cz+d

w

whore a,b,c, and d are constants, real or complex

(3). The Transformation
w =212

on the other hand, is double-valued, trensforming every point on the z-plane except 0 and e
into two points on the w-plane.
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Figure 27 — Circles go ints circles under the transformation w = 1/2.

In terms of 2 = re ‘0., the two values of w are

w, =22 (1/2 [cos(l 6\+ i sin(l 0“
1 2 ) 2 /]

w, = 2V2 4 12 [cos(% 6)+ i sip (-é. 0)]
J

As z moves about on its plane, w, and w, both move about on the w-pla.e; their valies
are said to constitute different branches of the function 31/2, The relationship is not like that
of the branches of a tree, however, but rather like that of the various loops of a string tied in
an open knot,

To study the situation more closely, let z start from the positive real axis and explore
the z-plane without ever passing directly from the negative real axis to points below it or vice
versa; it may move along curves such as ab, ac in Figure 28. The z-plane may be thought of
as cut apart just below the negativo real axis. Let g be defined so that —n < 8 5 7. Then
w, will explore the right-hand half of the w-plane, including the positive half of the imaginary
axis, while w, explores the other half of the plane. In this way w, maps the entire z-plane
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Figure 28 ~ The transformation w = 22,

onto half of the w-plane; and w, maps it again onto the other half. So long as the motion of

2 is rostricted in this manner, w, and w, behave as distinct single-valued and regular functions

of 2.

Yot w, and w, cannot be regarded as completely separate functions. For, if ¢ is
allowed to vary without limit, and if 2z goes completely around the origin and returns to its
starting point, as along curve efg (Figure 28), w, and w, will have just changed places; and,
if z then oxplores the plane as before, w, and w, interchange roles. It is thus clear tha:, as
2z moves freely, both w, and w, move continuowsly and freely on the whole w-plane. Further-
more, the location of the half plane on which the entire z-plane is mapped by either value of
212 can be varied st will by changing the position of the line, or curve, along which the
z-plane is cut.

Atz =0, w0, = w, =0, so that the two branches come together. For this reason the
point z = 0 is called a branch point for the function 21/2, If z actually passes through the
branch point along a continuous curve, the function 2¥/2, approaching along a given branch,
may be assumed to emerge without discontinuity along either beanch.

The point z = 0 is also a singular point of a certain kind, and at this point angles are
not preserved in the transformation from z to .

The inverse transformation 2 = w? is single-valued. But each value of 2 except
2 = 0 and 3 = 0 occurs twice among the possible values of 2 = w2

The function In 2 is discussed in Section 40, and z” in Section 39.

25. RELATION OF REGULAR FUNCTIONS TO TWO-DIMENSIONAL
IRROTATIONAL FLOW

Censider the regular transformation {22a]

w=f(2)=¢+id
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By differentiating Equitions {22¢,d] once more, it is found that

Thus every regular function of z furnishes at once two real solutions of the Laplace equation
{7a] in two dimensicns; they are obtained, respectively, from the real part and the imaginary
part of the function. This principle furnishes a powerful means of discovering such solutions.
Furthermore, as has been seen, the two families of curves, ¢ = constant and ¢ = constant,

intersect everywhere orthogonally, as illustrated in Figure 29, except perhaps where dw/dz

vanishes or al a singular point. g

Obviously either ¢ or & can be employed as the velocity potential [or a type of
irrotational flow,

If ¢ is the potential, the = and y components of the velocity are

=em—— V= 5a,b
’ dz Y dy [25a,b]
Thus, using Equation [22¢,d],
dy ar
- ym— d
© dy ¥ % [25¢c,d]

also. The agreement of these equations with Equations [13a,b} shows that ¢ represents the
stream function as previously defined.

The functions ¢ and ¢ have thus all of the properties of the conjugate functions de-
scribed in Section 13. The relatienship is reciprocal; for, any solutions ¢ and ¢ of the two-
dimensional Laplace equation that satisfy Equations [22¢,d] can be used to construct a reg-
ular transformation, w = ¢ + ¢ . Thus conjugate functions can be defined, as an Qiternative,
in terms of their relation to ceitain regular transformations of a complex variable.

Each transformation yields two conjugate types of flow, In the second type, the velocity
potential ¢ “and stream function ¢ “are reiated to ¢ and ¢ by the oquations ¢’ =y, ¢ "=~ ¢,
and the components of the velocity are

, T M, 3T M 3

22 e e 32 e mE— O e em——— TL am g mmee— I2 em m— 25ef
w oy el T Ty T Ty (250,(]
Use has been made hare again of the Cauchy-Riemann relations, Equations [22¢,d]. This
second type of flow can also be regarded as arising from the modified or conjugate transforma-
tion
W =g ' +iyy =t m=-if(a) =ty -i ¢ [25g)

Thns the conjugate flow is substituted for the original if in all formulas iw is substituted for
w, sinca {u ’ = w,

Comparison of Equations [25e,f] and [25¢,d] shows, as stated in Section 13, that the
vector velocity in the second type of flow can be produced by rotating the velocity in the first
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Figure 29 — Illustrating the transformation f(2) = ¢ + 7y for two families of orthogonal curves
& = constant and ¢ = constant.

type through an angle of 90 degree in the countercleckwise direction. Furthermore, the mag-
nitude of the velocity, which has in both types the same value ¢ = (u2+2v2)V/2 = (u'2 + v %) ¥2

can be written, in view of Equation [22e];

dw

daf
dz

25
dz [25h]

=

q:

Whon ¢ is the velocity potential, it is convenient tu think of w or ¢ + ¢ ¥ as a complex
potential. Its derivative is related to the velocity by the equation

ﬂ‘-’=—u+iv [25i]

dz
Equations {25i] and [25h) furnish usually the most convenient means of finding the velocity
from Equations [22b]) and [25%,c]. The points at which dw/dz = 0 are the stagnation points or
o points of zero velocity.

At a singular . sint where dw/dz becomes infinite, 7 would be infinite. In applications
of the theory, such points must be excluded. By the insertion of a boundary they may be caused
to lie in a region to which the fluid does not penetrate.

So long as dw/dz is single valued, no harm results if w itself is many-valued. In that
case a many-valued potential or stream function is obtained, or both,

But if, also, dw/dz is many-valued, so would be the velocity, in virtue of the relation
expressed in Equation 123i). A many-valued velocity, however, is physically impossible. In
such cases the z-piane must be cut or divided by a curve, representing a physical boundary, .
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in such a way that, as z varies freely bui, without touching this curve, w varies continuously
along one branch of its values without the occurrenca of ambiguities as to tho value of dw/dz.
Examples of this procedure occur in the next chaptor; Sections 40 and 61 may be mentioned.

Many transformations are most conveniently defined in the inverse {orm as 2z = F (w),
Upon separating real and imaginary parts, equations of the form 2 = F (o) ¥y = F, (¢, ) are
obtained. From these equations the equipotential curves and streailines, defined by constant
values of ¢ and ¢, may be traced.

Finaliy, the physical significance of certain constants that may be introduced into a
transformation should be noted.

Consider, in the first place, the effect of replacing™

w = f(2) [25j)
by

~iax
w=f(4z2+B), or w = f[k (z=-h) e ] (25k,I]

where £ = |4}, a = —amp 4, so that 4 = ke™i®, and & = ~Be‘®/k. The value of w that is

associated with any given value z, of z by the equation w = f(2) is assigned by (25) to a
value 2z, such that .
-ta ia

2
k(z,-h) e =zl,or32=-kie + A

Thus the vector representing 2, is obtained from that for z; by changing its magnitude in the
ratio 1/k and also rotating it through the angle a, and then adding the vector representing A.

The resulting change in the plot of w on the z-plane can thus be uescribed by supposing the

vlot tv he changed in scale in the ratio 1/k and also rotated counterclockwise through an

angle a , without moving the origin, and then to be given the translation represented by the

real or complex number 4. The entire flow is thus rotated and displaced on the z-plane in the
manner described. This constitutes an important means by which the solutions of hydrodynamical
problems car be modified to suit new conditions.

The chunges produced in ¢ and ¢ regarded as functions of z .nd y by the rotation and dis-
placement of the plot ere the same as would result from an opposite rotation and displacement of
the z and y axes and thus possess in themselves no novelty. The change of scale, however,
is less familiar. It leads to the useful rule that all functions or expressigns resulting from
a transformation w = f(3) may be generalized by replacing everywhere :;:'\kZ, or x, ¥ by kz,
ky, where k is any real number,

In the socond plsce, consider the effect of replacing w = f(2) by

Cw+D =f(2) [25m)
49
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Writing C = 6‘l +1 C, where C, and 6’2 are real, Cw = C(d+iy) = 0196-029/: + i(C2¢+Cll/;).
Thes C changss the potential and the stream function from ¢ and ¢ to

$'=C d~Cotby, U'=C+Coo

Hero, in the ‘erms containing C,, ¢ may be regarded as a second possible potential and - ¢
as the corresponding stream function. It is alroady known, however, that a new potential and
the associated stream function can be constructed by m. ".ng & linear combination of other
potentials and the same combination of the associated stream functions.

The addition of D to Cw then meroly adds constants to¢ “and i, which, as hydrodynami-
cal quantities, contain arbitrary constants in any case.

In view of all these results, it is often convenient to study a transformation in skeleton
foer, with the omissicn of constants such as 4, 3, C, D. The equations thus obtained may not
bs \ imensionally balanced, from the physical standpoint. The results can then easily be gen-
eralized as desired by adding constants to ¢ and ¢, or by multiplying both of them in all
equations by the same real constant, or by making suitable combinations of these functions,
or by changing axes on the z-plane, or, finally, by multiplying 2, 2, and y in all equations by
the same real number, In this way, also the dimensional balance can be restored if desired.

In practical problems a boundary condition is usually specified. If the fluid is confined
by fixed bounding surfaces, the streamlines must be tangential to these surfaces, and over
each of them ¢ must have a fixed value. The mathematical problem is then to find a trans-
formation w = f(2) such that the curves representing these surfaces on the z-plane transform
on the w-plane into straight lines parallel to the ¢ axis, along each of which ¢ has a constant
value,

No peactical general method of discovering the necessary transformation is known. It
can sometimes be found by means of the Schwarz-Christoffel transformation, which will be de-
scribed presently. Many types of flow have been discovered by assuming some transformation

and then investigating tho flow that it represents.

26. THE TRANSFORMATION OF IRROTATIONAL KOTIONS

The solution of a new problem can sometimes be obtained by transforming the known
solution of an old one. Thus, let w = ¢ + 7 y = f(2) be the complex potential for a known
problem; and let 2 be connected with a new variable Z by the transformation

2=2+ty=F(2), Z =X +1¥

The result is equivalent to a single transformation from Z to w:
-~

w = f[2(Z)} = ¢ (2)

}




Hence, when ¢ (z,y) and ¢ (2,y) have been expressed ir terms of X and Y, they may be taken
as the potential and the stream function for & new motion described in terms of X and Y. The
original boundaries on the a-plane become transformed into boundaries of a different shape on
the Z-plane; and the curves, ¢ = constant and ¢ = consiant, transform into curves for the same
constant values of ¢ and y on the Z-plane. Thus the known flow described in terms of z is
transformed into another type of flow satisfying different boundary conditions.

An alternative mathematical statement, is the following. Let ¢ (2,y), ¢ (2,¥) be a known
pair of conjugate functions, and let 2(X,V), y(X,Y) be any other pair of conjugate functions in
terms of the variables X and Y. Then a new pair of conjugate functions in terms of X and Y
can be obtained by substituting in ¢ (2,y) and ¢ (z,y) the expressions for = and y in terms of
X and Y. They may be written ¢ [z(X,Y), y(X,7)], ¢lz(X.7), y(X,7)]

Any boundary that is a streamlins on the z-plane remains a streamline on the Z-plane.
Sources and sinks also remain sources and sinks of the same strength; and the circulation
around any closed curve rotains the same value around the tesnsformed curve. For, the volume
of fluid emitted from a line source, per second and per unit length, is represented by the de-
crease in i as the source is encircled once in the positive direction, according to a principle
stated in Soction 40, whereas the circulation around a closed curve is similarly represented by
the decrease in ¢ as the curve is traversed in the positive direction, and these changes in ¢
and  are invariant under the transformation.

27. THE LAURENT SERIES
Many series of posiiive powers are limited in their range of convergence. For example,

A =1+2+2

1~2

240,

conveorges only within the unit circle defined by |z | = 1. On the other hand, negative powers
such as 1/5 or 1/22 are regular frnctions of z except only at z = 0. These observations
suggest that saries containing both positive and negative powers might be useful.

In books on functions of a complex variable it is shown that, if f(2) is regular at all

points near a given point z = ¢, it can be expanded in a series of the form

f(3)=...b,(2~c)"2 + b ,(a~c)" +ag+a,(3-¢) +a,(3-¢)* . . ..

where the a’s and 3's are constants and all positive and negative powers of (3 -¢) may vccur.
This is called a Laurent Series. It converges at any 3 # ¢ throughout the intericr of a circle
drawn about ¢ as center and passing through the singularity nearest to ¢; if f(3) has no singu-
larity except perhaps at ¢ itself, the series converges for sll 2 = c.

If the series contains negative powers of unlimited order with nonvanishing coefficieats,
f(2) has an essential singularity at 2 = ¢; if the series begins with & term containing a definite
negative power, namely, b, (3~c)~ ™, f(2) has a pole of order m at 2 = ¢; if m = 1, the pole is
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called simple. If f(2) is regular also at ¢, the negutive powers disappear and the series be-
comes a Taylor series, converging also at z = c.

Tho series exists also if f(2z) is assumed to be regular merely outside of a given circle
centered at ¢, or between two such circles. Then the series converges at least at all points
outside of the given circle, or between the two circlas, respectively.

In any case, if a Lauront Series or Taylor Series representing a function w (2) converges
for all large z, then it can be shown that either values of |w| exceeding all limits occur when
2 goos to infinity in certain directions, or else the series contains no positive powers of 2.

28. COMPLEX INTEGRATION

An integral with respect to the complex variable z = z + 7y is defined in the same way
as with real variables, but it has some novel properties.

The indefinite integral of f(2) or [f(2) dz is a function F (2) of 2z whose derivative is
f(2), as with real variables. If F(2) is many-valued, care must be taken to select a branch of
this function that varies continuously with z.

In defining the definite integral, it is necessary to specify, in addition to the limits, a
definite path of integration connecting them. This may be indicated by adding to the integral
sign a symbol designating the path. For example, the intagral of f(2) along the path APB in
Figure 30 is

Az=»0

f f(2)dz = lim_ sq2)Az
(APB)

Here the sum on the right is formed as follows.
Choose a large number of points scattered
along the curve, and let Az stand for the
difference in the values of z at any two
successive points; thus, in Figure 30, one

Az =2, -z, the next Az = z, ~ 25, and so
on. Multiply each Az by the value of f(2) at

z any point on the corresponding segment of the

o
curve; for example, if Az = 2, - 2,, f(2) &3

/ 4 may stand for f(2%) (2, ~2,), where 2’is the

point shown in Figure 30. All the products
thus obtained are to be added, and the limit of
—— this sum is to be taken as the number of points
is increased indefinitely in such manner that
all of the differences Az approach zero.

Figure 30 — Illustrating the definition of The value of such an integral is usually

a complex integral. a complex number. It can also be written in
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terms of two real line integrals in which the variables of integration are z and y. Thus, if
f(2) = ¢ (2,y) + ¢ ¢ (2,y) where ¢ and ¢ are real functions, since da= dz + ¢dy,

ff(z)da-f(qbdm-n/; dy)+if(y‘;dx+¢dy) (28a)

Here dx and dy may be interpreted as components of successive elements dz, and values of
¢ and ¢ are to be taken at points lying on the corresponding elementary segments of the path.
Negative values of dz and dy may occur as well as positive valuss.

The integral of f(2) along a closed curve is often denoted by ¢ f(2) dz. This symbol
will be understood to imply thut the curve is traversed in the positive or counterclockwise
direction, that is, in such a direction that its interior lies on the left.

29. THE CAUCHY INTEGRAL THEOREM

A3 in the case of integrals with respect to real variables, reversing the direction of
integration along the path reverses the sign of the value of [f(2) dz. But integrals of f{2)
along different end points, such as APB and AQB in Figure 30, may or may not be aqual; and
¢ f(2) dz taken around a closed path or contour, such as M in Figure 30, may or may not vanish.
If an integral around a contour does not vanish, its sign is changed if the direztion of .ategra-
tion around the contour is reversed.

The following important theorems can, however, be proved. The first two taken together
are known as Cauchy’s integral theorem.

(a) If /(2) is regular at all points both inside of and on a closed contour, then arcund the
contourd f(2) dz = 0.

(b) If f(2) is regular at all points between and on two paths joining two end points P and P’
then j': ’f(z) dz has the same value along both paths.

(e) If f(2) is regular at all points between and on two closed contours of which one
encloses the other, then ¢ f(2) dz has the same value around both contours.

In all three cases, it is also sufficient if f(2), instead of heing actually regular on the
contour or path itself, is merely centinvous from the contour or path into the region in which it
is required to be regular.

Cauchy’s second proof ot (a) is instrustive enough to be repeated here. It is open to a
certain logical objection, however; a more satisfactory peoof can be found in books on functions
of a complex variable (for example, E.T. Copson !3),

Let the first of the Cauchy-Riemann equations or {22c] be integrated with respect to z
and y over the area on the z-plane enclosed within the contour, giving

9% r.@ﬁdzdy
~ffaz da:dy-fj 0y
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Now

d¢ ~ o b
[ fof Eaef 000

provided d¢/dz is continveus in z. Here ¢, and ¢, denote values at opposite ends of
the range for z, for 2ny given value of y, as illustrated in Figure 51,

The intogral in y is then to be carried out between the extreme limits for y, and dy is
is here understood to be positive. This integral can also be written

[ @290y = $4ay

where ddenotes as usual the integral taken around the contour in the counterclockwise direc-

tion. For ¢, dy equals the corresponding ¢dy in the contour integration, whereas ¢, dy = ~ ¢ dy

since all dy’s are negative along the left-hand side of the contour. Hence

ff?idzdww dy
dz :

ff%dxdyzfdzf(¢2_¢l)dy___"“,/dz

the sign is negative here because it is at point number 2 that dz has oppesite signs in the two
integrations.

Similarly,

Hence
§dy=- ¢y dz

Similarly, by integrating [22d]

~fpdz =~ g dy

From these twc equations it is obvious that the right-hand member of Equation [282] vanishes.
Hence §f(2) dz = 0.
Theorems (b) and (c¢) are corollaries of (a).

To deauce (b), let APB and AQB denote two paths of the kind specified in (b). Then
APBQA is a closed path to which (a) applies, so that
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B
Figure 31 — A closed path of integration Figure 32 — Two alternative closed paths
of integration.
B A
Jorreaes [(@ 1@ a0
A B

Here (P) and (@) are inserted to specify that the paths of integration pass respectively
through the points P and @, But

A B
J@r@a-- [@i@a
B A

hence

B B
(P)1(2) a2 = Q) /(2) dz
Jonae- ]

To obtain theorem (c), connect any two contours AIDA, EFGE, by a cross-path BF,
as in Figure 32. Then the path BDABFEGFB is a closed contour around which, under the
conditions assumed in theorem (c), ¢ f(2)dz = 0. But the path BF is traversed twige, in
opposite directions, and hence its net contribution to the integral vanishes. The cortributions
made by the original contours are thus equal and opposite. But the contour EFGE was trav-
ersed with its interior on the right, or in the negative direction; if traversed positively, its

contribution to the integral is reversed in sign. llence ¢ f(2) dz has the same value around
the two original contours.
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These theorems are of enormous value in the evaluation of coniple« integrals. The
evaluation can often be rendered very easy by deforming tho path intc o suitable shape; the
path can be deformed at will so long as it is not deformed past any point at which f(2) ceases
to be regulsr.

30. SINGULAR POINTS AND RESIDUES

An important case in applications of the theory is that in which f(2) is regular through-
out a certain region S except at one or more internal points. These excluded points may be
singular points, or they niay be points at which nothing is known or assumed about the function.

Suppose that S contains one excluded point. Then ¢ f(2) dz has the same value for
all closed curves lying in § which encircle this point once. This follows from theorem (c) in
Section 29, in view of the fact that no excluded point occurs either between or on the two
curves. The number

1
01 $f(2)dz

is called the residue of the function f(2) at the excluded point.

If more than one excluded point occurs in S, the value of ¢ f(2)dz around a curve en-
circling any finite number of them is 2# ¢ times the sum of the residues of (2) at the encircled
points. This 18 proved by deforming the original curve until it consists of separate curves
encircling one sirngular point each and conrected by paths that are traversed twice, as illus-
trated in Figure 33, where @ and R represent two exciuded points and the outer curve is the
original one. The connecting paths cont.ibute nothing to ¢ f(2) dz taken around the combined
curve.

As an example, consider

/(2) =

(2~a)"
where n is a positive integer and a and % are constants. This function has one singularity, at
z=a. Let the path of integration be a circle of radius R about 2=g as center. Tien, for values
of 2 on the circle, |z2-al = R, and, if ¢ is the amplitude of z -a,
2-a= Iteio, dz =iRe' dg

since R is constant along the circle. Thus

27
f kdz _ . iRe'9d _;pp1-n f ei1=-m0 gg
(z~a)" (ReiB)n 0
Ifn>1,
gii=mo  O=2x
kda\ngikﬁl'-n . =0
(2-a) i(l-n) [ gao
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since, for integral n,
efi=mM21 o cog ((1-n)2n) = 1

But if n = 1 the integral bocomes

n

2
_kdz_ 4 f d0 = 20 ik (302]
0

2-a

Thus the residue of k(z—-a)~"is 0 for n > 1 but equal to & for n = 1. Often f(2) can be written
in the form

g(2)

(2-a)"

f(2) =

where m is a positive integer and the function g(2) is regular both at 3 = @ and in its noighbor-
hood. Then g¢(2) can be expanded in a Taylor series near z = a:

g(2) =a, +a (z-a) +a,(z-a)% +. ..

By substituting this series for g(2) and using
the results just obtained, it is seen that the

residue of f(2) at z =a is @, _, or the coef-

ficient of the power (z2-a)™ ! in the series.
Or, the residue of f(2) at 2z = a also equals o 0
g¢™ (a)/n! where ¢g{™ (a) denotes the value

of the 'l derivative of gatz =a,

Figure 33 — Integration around two
singulsar points @, R.

31. THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

This transformation is useful in two-dimensional hydrodynamical problems that involve
boundaries in the form of flat surfaces, so that their trace on the zy-plane is a polygon. It
may be an ordinary finite closed polygon, such as A, 4, 4; 4, 4; in Figure 34, or the bound-
ary on the zy-plane may consist of one or more brokan lines each of which extends to infinity
in at least one direction. Boundaries of the latter sort can be formed out of a finite polygon
by allowing one or more vertices to recede to infinity and perhaps to spread out there; they
are often regarded as closed polygons with vertices at infinity.

The Schwarz-Christoffel transformation maps the sides of such a polygon onto the real
axis in another complex plane, and r1ps the interior of the polygon into the upper half of this
plane. If the polygon hus vertices at infinity, the space on either side of it may be defined
ag the interior.
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Figure 34 — Illustrating the Schwarz-Christoffel transformation.

Let the polygon be drawn on the z-plane and mapped onto the plano of the variable ¢,
which is also shown in Figure 34, ¢ being complex.

The appropriate transformation is most simply stated in terms of the inverse derivative,
thus:

dz T % ~%2 ke
T =K(t-a,) (¢-a,) seo(t=ay) {31a]
Here K is a constant, real or complex; a,a

2 + + + @, are n real numbers in ascending order of
magnitude; and o, @, ... -«

, are another set of n real numbers.
The powers that occur in [31a] inust be made single-valued by a suitable convention

concerning the amplitudes. Let a denote any one of the constants a,...a,and a the
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corresponding @, . . .« ,. When ¢is real and ¢ < @, ¢~ ais a negative real number. As ¢
explores the upper half plane and comes down to the real axis where ¢ > a, as illustrated in
Figure 35, the amplitude 0 of ¢ - a decreases by ». Let 0 be so chosen that

<05—g-n

iy

Then, for the values of ¢ under consideration,
0 varies continuously between 0 and &, and

(¢-a)~ *@is a continuous function and is

differentiable by the ordinary rule. Actually,
¢t may be allowed to go arywhere except to . ) )

) . . Figure 35 — Path past a singular point.
¢ = a, but it must not cross the vertical line
extending downward from ¢ = a.

Let all of the points ¢ =a , a, . .. a, be treated in this manner. Then dz/d¢ and the

function z (¢) obtained by integrating dz,/dt will be regular functions of ¢ above and on the real
axis except at the points ¢ = @y, 8y .o Q.

Finite Polygons. Let a,, «, ... a, be such that

2
—léai<1, i=1,2...n
i<aj+ a,+... 0,52

The meaning of the first statement is that all of the a’s lie within the limits specified.

Under these conditi: is, the transformation defined by Equation [31a] transforms the
real axis of ¢ into a closed polygon on the z-plane. To show this, the equation must be inte-
gratad along the real axis.

As t advances a distance §¢ along its real axis, the z-point on the a-plane undergoes
a displacement

5z L ot
dt
Since 8¢ as a vactor is directed toward ¢=¢+ e, the direction of 6z will make with the real axis
on the z-plane an angle equal to the amplitude of dz,/d¢. This amplitude is in turn the sum of
the amplitudes of the various factors in the right-hand member of Equation [31a].

So long as ¢ is to the left of a,, the amplitudes of all factors such as (¢~a)~ “remain
constant, and so does amp (d2/dt). Thus, as ¢ moves from - « up to a,, 3 moves along a
straight line, as illustrated, for example, by A 4, in Figure 34.

The total complex length of this line is

59




a
-0t -0

! -4 2 n
K f (¢t-ay) (¢-ay) coa(t=a)) dt
The integral is an improper one, but under the conditions assumed it converges at both limits
and has a finite value.

For, in the first place, over a short range of ¢ from some value ¢, up to a,, variation of
the remaining factors can be neglected and the corresponding part of the integral is nearly
proportional to

1

a1 -t [ -a a
f (¢~a;) ' at =(1—al)"l (¢-a,) ! / {31b]
4

4

Since by sssumption &, <1, this integral is finite.
In the second place, for large negative ¢ the constants a,, ¢, . . . may all be dropped in
comparison with ¢. Thus the integrai toward £ = - ~ reduces approximately to

(e +a, +...ap) 1-(at +a+...a)/
K /(t) "dt = 4 e " e
2o 1-(G‘+02+...a")

{31c]

which is finite since the sum of the a’s has been assumed to exceed 1.

As ¢ increases past a,, the amplitude of ¢ ~ a decreases from # to 0, as is clear from
Figure 35. Hence the amplitude of (£-a)~*1 increases (rom ~a, n to 0, and the amplitude of
dz/dt likewise increases by a, 7. Thus from Z =, to ¢ = a,, 2 travels along another straight
line making an exterior angle a, # with the first line. This line, too, is of finite length, as
illustrated by 4, 4, in Figure 34.

It cannot bs concluded immediately, however, that these two lines join at 4,. For it
may not be possible actually to integrate past the point £ = a,, at which dz/dt is infinite if
a, is positive. To avoid this difficulty, we adopt the standard device of letting ¢ pass abov :
a, along a small semicircle centered at a,, as illustrated in Figure 36. As ¢ traverses this
semicircle, 2 cuts across from one straight line to the other, along a curve such as that drawn
near 4, in Figure 34. The change in z along this curve is given by the integral of da/dt along
the semicircle.

In terms of polar coordinates, as illustrated in Figure 38, on the semicircle

i0, if,
t-a,=r e ,dt=ir e dé,
since r, is constant. For an approximate estimate, all other factors ‘n dz/d¢ can be traated
as constants; Jet their product, multiplied by X, be denoted by Q. 'Then the change in 2z as ¢
goes around the semicircle is, from [31a],
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Since a <1, the exponent of r, is positive. Hence, as the semicircle is shrunk down onto
t=a, and r, » 0, Az » 0. On the 2-plane, therefore, the two lines must meet at a point.

By proceeding in this manner it can be shown that, as ¢ traverses its real axis from
~ = t0 + w0, 2 Inoves along a broken line with corners corresponding to ¢ = @, a,. . . a, at
which extericr angles a, n, a, 7 ... a,noccur. To form a finite polygon, the ends of this
broken line must coincide.

Now the distance between the ends is equal to jo_ow (dz/dt) dt along the entire real
axis, calculated with avoidance of all the singular points in the manner just described. The
value of the integral can ke found more easily by the followinsg indirect method.

Le¢ # trace the following contour, as illustrated in Figure 37. Beginning at a point
t = -t where R is a large positive real number, let { trace the real axis to the point ¢ = 2,
excapt that it goes round above the points a,, a, . .. a_ along small semicircles. Let ¢ then
return to its starting-point along a large semicircle of radius /. On this contour and everywhure
inside it, dz/d¢t is differentiable. tlence, by the Cauchy integral theorem, [ (dz/dt) d¢ arouni
the contour vanishes. But it can be shown that the contribution of the large semicircle decranses
to zero as R » «. For, on this semicircle, the absolute vaide of ¢ equals R and is so largo
that a,, a, . . . 2, ore relatively negligible and may be omitted. Let

i3 i0
t=Re ,dt=iRe do
and write

T PR R o, =2a

Y
Y

Figure 36 — Semicirculur path past a singular point.
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Figure 37 — A large semicircular path.

Then, from [31a], around the large semicircle, approximately,

1=-3a® j(1~-%c)f

dz -Za
f——d&-Kft dt =i KR fe 40
dt A

K I-Ea( i(1-Zay, )
At e -1

(31d]

Since by assumption £ ¢ > 1, this last expression goes to 0 as R -+ .
The remainder of the contour integral, therefore, must likewise become zero as B + «,
But if the small semicircles are allowed to shrink down onto their centers, the remainder
becames in the limit the desired integral. Hence it must be that this latter integral itself
equals zero. It follows that Az = 0 between the ends of the broken line, so that they join and
conplete a finite polygon, at 4 in Figure 34.
The last segment of the broken line makes an angle (2 a) 7 with the first, or the first
makes an angle
Speq 7 =(2-Za)g =[2 —(al to, e an)]n
with the last; in Figure 34 this is the exterior anglhai A.. The number of actual vertices then
depends upon the value of Za .,
fa= a +a,. .0, <2, the polygon has an actual vertex corresponding to ¢ = e,
with en exterior angle a,, ,7. The two adjacent sides A A, and 4, 4, in Figure 34, have
lengths

e |

dz dz

11£< dt. 1] &< 4,

f-w [rea]dt 3 L [real) T t
n
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whero [real] indicates that the integral is taken along the real axis. Thus, in gene:al, n
factors in dz/dt produce a polygon with n+1 vertices and sides, and with ¢ = « at one vertex.
If aj+ay +... @ =2, however, a,, , =0, so that the first and last segments of the
broken line coalesce into a single straight line. In this case the polygon has only n actual
vertices and sides, and ¢ = « occurs somewhere on one side; the total length of this side is

a

1 d F dZ
f [real) -JE dt + f [real] 7; d¢
- 00 an

This case may be rogarded as a degenerate one in which the exterior angle at the (n+1) st
vertex is zero.

Thus it has been shown that the real axis of ¢ is transformed into a finite closed polygon.
It remains then to show that the arbitrary constants in the transformation can be chosen so as
to fit an arbitrarily chosen polygon on tke z-plane.

The general oxpression for 2z will be

- -

- n
z=K/(t—al) l(t-az) 2...(t—an) dt + L

Now changing the integration constant L merely translates the polygon on the z-plane; changing
|K| stretches all of its sides in a certain ratio, ard changing amp K rotates it about the point

z = L, By adjusting K and L, therefore, one side of the transformed polygon can always be
made to coincide with one side of the given polygon. The two polygons will then coincide
completely provided they have the same shape. The necessary similarity can be secured in
either of two alternative ways.

1. For a polygon of m sides, m~1 {actors may be employved in the expression for dz/dt,
with @, @, , .. a, _, made oqual to m~1 external angles of the given polygon taken in
order, each divided by ». The oxternal angles then come out correct. For the lengths of the
sides, m integrals are obtained, two of them extending to ¢ = + ». Elimination of the factor
K from theseo inteprals leaves m -1 ratios between them. By a suitable choice of a,, a

90 v ¢

a these ratios can be made equal to the m—1 ratios of the lengths of the sides of the

m=1?
givenl polygon to the length of a chosen side. These latter ratios cannot all be independent,
however; for the last two sides, whose directions are already fixed, will automatically come
into the correct ratio when the cther ratios have been adjusted. In Figure 34, for example,

4, 4, end 4, 4, are fixed in length when their directions have been assigned and when the
sides 4, 4, and A, 4, have been constructed in the proper ratio to A 4. Hence two of the
a’s can be chose: arbitrarily, the remaining ¢’s being then chosen so as to give correct values
to m~3 of the rac.ns of the sides. In practice, it is usually most convenient to determine .

and L by substituting the values of 2 at two corners.
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2. As an alternative, m [actors may be employed in the expression fur dz/J¢, with a's
ropresenting all of the external angles. In this case only one integral to infinity is obtained,
representing the Jength of one of the m sides, at some point of which ¢ = « occurs. The a’s
are again subject to m- 3 conditions, but hore their number is m. tence in this case three

of the a’s can be chosen arbitrarily.

Infinite Polygons. A corner of tha polygon can be displaced to infinity in either of
two ways.

1, f=1< o +a,... a <1, the integrals to £ = + » and from ¢ = - « no longer con-
vergo, as is illustratod by Equation {31c). Thus the broken line extends to infinity at both ends.
The integral aleng the semicircle at infinity, in Equation {31d}, also no longer vanishes.

If a+a,+.cca,=lya,,=2~(a; +...e))=1also, and the first and last
segments of the broken line, on which ¢ < a, or ¢ > a,, respectively, differ in direction by
a,,, 7 =nand so are geometrically parallel. In this case [31a] can also be written

_dl "U"
;‘f-f"" @ -8)  ...{a,~0)

Thus on the first and last segments dz/d¢ has opposite signs, so that these segments are
traced in opposite directions. For their distance apart, measured from tho last to the first, &
fresh evaluation of the integral in Equation [31d] gives

n

Aaail{[ dAi=in K

Tere the factor i causes Az to be perpendicular to both segments, whose directions are those
of ¥ K. This case is illustrated in Figure 58a.

Examples in which ~1 < a, +a, ... a,<1are illustrated in Figures 38b, ¢, d. llere
Az, estimated as in Equation [31d], is infinite. In Figure 38d the geometrical polygon is re-
duced to a single semi-infinite line and its “‘interior’ ircludes all the remainder of the z plane.

2. As an slternative, one of the a's may itself exceed 1. Then the integrals up to the
corresponding point a, as in [31b], diverge, and both adjacent sides extend to infinity. No a
should be mede greater than 2, however. Two casos are shown in Figures 38e and 38f; in
38f the polygon consists of two unconnected infinite lines.

As with finite polygons, a given infinite polygon can be transformed into the real ¢
axis in different ways.

In any case, as ¢ traverses its real axis positively, the upper half of the ¢-plane lies
to the left; hence, as explained under conformal mapping, the corresponding region on the
z-plano lies to the left as z traces the perimeter of the pclygon. In the case of finite polygons,
the region on the left is the interior; with an infinite polygon, the regicn on the left is that
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(¢=ay)

(t=a,)

dz -1/3 —~2/3
T“(t—al) (t—(lz)

Figure o -

(Intetior)
1
t: y (X E - —
{t=a,0 2)

N

0 2. g ()2 0
dt
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0 (t = a,) oo
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X
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(
Figure ¢ -
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— o —
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(t =al) (C-l(l2
dz (t-a,)” /3 (t-az)"”‘
t

Figure b -
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Figure 38 — Some infinite pr '+'gons.
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which is transformed into the upper half of the ¢-plane and hence may appropriately be defined
to constitute the interior. An infinite polygon can be traced in either direction; if the direction

is reversod, the extarior angles are replaced by their supplements, and the former exterior be-
becomes the interior.

Detailed discussions of a number of cases will be found in the next chapter.
32. THE HYPERBOLIC FUNCTIONS

The following formulas are collected here for convenience of reference. Where % occurs
twice in the same formula, the upper sign is to be taken throughout the formula, or the lower

sign throughout. The positive square root is always meant, and In denotes the togarithm to
base e.

sinh z -%—(e’-e""), cosh = =-%-(e"+ e~ %)

tanhg = Sibh z _e¥-e™”

b
cosh z x

coth SC_(.)S_h_.’E-,: e*Xyre” %
e*+e”

sinh 2

ex _ e-x

sech z = 1 = x2-—x
coshaz e¥+e

9
, csch z = _1 -
sinhaz e*-e

sinh (z£y) = sinh = cosh y £ cosh z sinh y
cosh (2%y) = cosh 2 cosh y % sinh z sinh y
sinh 2z = 2sinh z cosh z, cosh 2z = cosh? z + sinh? z

tanh 2z = —2-tanh tanh}g_,

coth 2z =1 (tarh z + coth )
1+tanh®2 2

sinhlzat \/_i (cosh z - 1) coshl g = \/l (cosh z+1)
2 2 2 2
(The sign is + or ~ according as the value of z i¢ + or - )

tanh 1 » . 8inh 2 cothl z = Sinh 2
2

cosh z+1’ 9 cosh 2 -1
sinh™! 2 = In (2 + V22 + 1), tanh~! =%. In _;l‘é
cosh~! z=%In (z+ V22 ~1), coth™! =-;- In ‘“’i
z-—
d% sinh z = cosh z (ﬁ cosh z = sinh z
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2 tanh z = soch? z 2 coth 2 = ~cach? &
dz dz
4 soch 2 = ~ gech = tanh 2
dz
4 csch z = ~ csch z coth z
dx
sin (iz) = { sinh 2 sinh (iz) = i sin 2
cos (iz) = cosh z cosh (iz) = cos 2
tan (iz) = { tanh 2 tanh (iz) = ¢ tan 2
cot (iz) = - i coth 2 coth (iz) = - i cot z

sin (z£ iy) = sin = cosh y £ ; cos 2 sinh ¥

cos (z £ iy) = cos z cosh y T i sin « sinh y

tan (z *4y) =1 8in 22 T { sinh 2y
( 2 2  cos’z + sinhTy

sin 2z ¥ £ sinh 2y
sinz + sinhZy

cot (2 iy) =%

cos z cosh y X { sin 2 sinh y

sec (@ £ iy) = cos? z + sinl? y

sin z cosh y ¥4 cos z sinh y

ese (2 £ iy) = sin? 2 + sinh2y

sinh (z % iy) = sinh z cos y 5 cosh z sin Y
cosh (z £ iy} = cosh 2 cos y  { sinh z sin y

sinh 2z % { sin 2y

i) = L
tanh (@ % &) "2 sinh? z + cos? y

sinh 2z ¥ ¢ sin 2y

tiy) =Ll
coth (z ly) 2 sinh2 2z + Sin2y

cosh z cos y F ¢ sinh 2 sin
sech (2 £ iy) =- Y ¥

sinh? z + cos2y
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sinh ¢ cos y ¥ 7 cosh  sin y

esch (z X iy) =
(=) sinh? z + sin? y

sinh? z sin? y + cosh? z cos? y = sinh? 2 + cos? y

= cosh? z - sin? =_;- (cosh 2 2 + cos 2y) (32a)

sinh? ¢ cos? y + cosh? z sin? y = sinh? z + sin? y
= cosh? 2 ~ cos? y -—-(—E(cosh 2z - cos 2 y) (32b]
The first six of these formulas may serve as definitions; the others can be deduced from
them, or, for functions containing ¢, from results obtained in Section 20. In some cases deno-
minators are rationalized. In the last two formulas, the second and thirc members may be added

and divided by 2 in order to obtain the fourth,
The first four functions ara plotted in Figure 39.
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Figure 39 — Plots of four hyperbolic functions.
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33. SOME SERIES

i 22 23
e =1+z+;!+§!-+... {33a]
. 23 25 27
sma:=x—§i +—5—!-7—!. 133b]
z2 g4 26
COS:L'=1—-2--!+I!—-E!—... {33¢c)
tanz=z+lz3+—2-a-5+-l-?-.t7... lz| < 33d
3 15 315 el 2 (33d)
1 2_1_.3_9 .5
Cotr== w22 23 o 2 25 (lzl < 3e
2 3 45 945 (=l <] (33e]
. z3 .’1:5 x7
snnlnx=x+é—!+a+?{... [331]
z2 g4 26
cosha:=-1+-2—!+4—!+g-!-... {(33g)
tanhz=z-L 23,2 ,5_ 17 27, z| < h
3° "7 T35 Il <3 (33h)
coth z =%+§~415 225 2 5. el <n] (33i)
sin"lg=z4+ 1 53, 13 5, 1.3.5 7... <1 33j
537 T35 "o flel <11 (331)
tan"! z = 2 -%. z3 +.{l) 25 1,7, J2] <1)
[33k}
=”-}:.+ 1 _ 1; >1
o "z 5 g - >l
sinh™ 2=z -1 23, 18 55 (1<) [331)

2.3 2445

tanh™ ! z =4 la3 415 1,7, ..
3 5 7

In (1 +z)=z—%.x2+

Y o

xcept as indicated, the expansions hold for all values of z,

Formulas!8 for other series.
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2T L2 < 1) {33m1

z3 -%.:c“ oozl < 1) {33n)

See Smithsonian Mathematical




CHAPTER IHI
CASES OF TWO-DIMENSIONAL FLO#W

The principal known types of two-dimensional flow, including all that are treated in
Lamb’s Hydrodynamics,! will bo described or listed in this chapter. The important formulas
will be deduced and plots of the streamlines or sometimes the flow net will be shown,

As the thoory of complex variables is particularly suited for two-dimensional problems,
it will be used consistently. Acquaintance with the theory will be assumed, to the extent of
the summary in Chaptor II, and also with hyperbolic furctions, for which some formulas are
listed in Section 32. As a rule the standard formulation described in the next section will
be adopted.

34. NOTATION AND FORM OF PRESENTATION

The given boundaries pertaini. g to a particular problem are assumed to be drawn on the
plane of the complex variable z = z + 7y, on which z and y are real Cartesian coordinates. Dia-
grams on this piane will be labeled indiscriminately with symbolis representing geometrical
magnitudes, such as points or distances, and with symbols representing complex numbers.

The appropriate mathematical transformation is represented in each case by

w(2) = ¢ (2,y) + i ¥ (2,9)

where ¢ and ¢ are real functions of z and y. Except as stated, the fluid is assumed to be at
rest at infinity. For simplicity, each transformation is regarded as giving rise to two conjugate
types of flow.

In one type of flow, ¢ represents the veiocity potential and ¢ the stream function; the
equipotential curves are given by ¢ = constant, and the streamlines by ¢y = constant. The
z and y components of the velocity are then

adb ol dé dvr
e e e e — [34a,b)
dr  dy dy dz

In the conjugate type of flow, the velocity potential ¢ “and the stream function ¢ “are
related to ¢ and o as follows:
&'=d, W'=-4¢

The equipotential curves and the streamlines are intetrchanged; and the velocity components v’
v’ are:

4’ dd’
we-2 Ly, v=--aé=u [34c,d]
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Thus the vector velocity (v, v*) is rotated positively or counterclockwise through 90 degree
relative to (u,v). The second type of flow also constitutes the first type as furnished by the
modified trunsformation,

w (gy=¢’+id’=-iw2)

The flow net, or the pattern of equipotential curves and streamlines, is geometrically
the same for both types of flow. The magnitude of the velocity is also the same in the two
types. namely,

e 0 | (340)
dz

Furthermore, since dw/dz = gw/dz = dp/9z + i i/ 9z,

. dw .., Ldw  dw, 34f.0)
- = e— - = o ) e 2
+ 7 u'+ 0 " 7a [34f,g

Usually v and » are most easily found from Equation {34f] by separating dw/dz into its
real and imaginary parts; in order to do this, it may be necessary to rationalize a denoniinator
by multiplying by its complex conjugate. Frequently, values of u and » obtained in this manner
will be given without writing down dw/dz. In some cases, however, use of Equations {34a, b]
is more convenient.

Stagnation points occur in both types where dw/dz = 0 and hence ¢ = 0. At such points
the transformation may fail to be conformal, and equipotential curves and streamlines may meet
at other anglies than 90 degree.

Singular points for the transformation occur wherever dw/dz -+ «. Since at such points
q » =, they must be excluded from the body of the fluid by inserting suitable boundaries. It is
convenient, however, to allow a singularity to fall on a boundary; in a physical case, it can
then always be imagined to be removed from the region of the fluid by slightly altering the
shape of the boundary.

¥hen polar coordinates r, @ are employed, the compoaent of the velozity in the radial
direction is denoted by g, that in the transverse direction of increasing 6 by ¢,; these

components are calculated as
% ( 1) d¢h
=% 1077\7/ %0

Many-valued functions are to be understood as defined so that they vary continuously
with z, or with z and y, in all variations that are possible without crossing any boundaries
that may be present. If it is appropriate in a given case to choose a single set of values for
such a function, this is to be done in such manner that the function takes on its ordinary values
at points on the positive z-axis, or the positive real axis for a.

The symbol / will be used only for the positive square root of a positive real number.

(B!
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In mony figures the curves which are streamlinos when ¢ is the potential will be marked
with arrows. For the conjugate flow the arrows are then to be supposed transferred to the other
set of curves. Curves are always drawn for equally spaced values of & or of ¢, and in flow
nots the ssme spacing is used for both ¢ and . Sometimes, however, an intermediate curve,
for a value midway between those for the adjacent curves, may be shown as a broken line,

Physical cases can be constructed as desired by inserting a rigid boundary along any
streamline; this doos not disturb the flow, since friction is assumed to be absent. If the bound-
ary extends to infinity so as to divide the field complotely, the flow can be assumed to occur
only on one side of it, or to differ by a constant factor on the two sides. Special cases cor-
responding to different possible positicns of such a boundary are not usually illustrated.

The positive direction for angles, and for tracing closed curves, is taken as usual to be
counterclockwise, Thus, in tracing a closed curve positively, its interior lies on the left.

This direction is understood in the symbol ¢, dencting the line integral around a closed ctyve,
and in the fundamental definition of the circulation.

The circulation I around any closed curve is also equal to the nepative of the algebraic
change in the velocity potential on going once around the curve in the positive direction.

Many types of two-dimensional flow possess one or more planes of symmetry, which are
represented oa the zy-plane by a line of symmetry. Two types of symmetry may be distinguished.

In one type, which will be called symmetry of flow, the actual motion on one side of the
piane is the mirror image of that on the other side. At points symmetrically located relative to
the plane of symmetry, the values of ¢ and & are the same, also those of the pressure p, snd
of the component of velocity parallel to the plane; whereas the component of velocity perpendic-
ular to the plane is oppositely directed. The difference between the value of ¢ and its value
on the plane, which is necessarily composed of streamlines, is equal and opposi‘e at the two
points.

in the other type of symmetry, the flow net is again geometrically symmetrical, but the
motiong have a dilferent relation; p, &, and the vector component of velocity perpendicular to
the plane of symmetry have equal values at corresponding points, whereas the component of
velocity parallel to the plane, and also the algebraic excess of ¢ above its value on the plane,
have equal and opposite values,

Mary exaniples of the two types of symmetry may be found in succeeding sections. The
contrast is specifically mentioned, for example, in Sections 43 snd 55.

The kinetic energy of the mass of fluid that is contained between two planes parallel
to the flow and unit distance apart will be denoted by 7. Its dimensions are those of kinetic
energy divided by distance or ml/¢2,

Formulas for the pressuro p will not usuaily be given. When the boundaries are station-
ary and the motion of the fluid is steady, the pressure is given by the Bernoulli eyuation,

-1

p p(U2 ..qz) + P oo [34h]

o
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in which p is the density of the fluid, assumed uniform, U is the particle velocity, and p__ the
pressure in tho fluid at infinity. In many figures the difference, p-p _ or p (U2 -42)/2, along
selected lines or curves is shown on an arbitrary scale. The pressure along the y-axis is some-
times plotted horizontally, with positive values toward the right. Any case in which the bound-
aries are in uniform translatory motion may be reduced to the corresponding case in which they
are at rest by a suitable change of the frame of reference, or by imparting to everything an equal
velocity in the opposite direction. Such a change does not alter the distribution of pressure or
the forces.

Results will commonly be stated in terms of a particular choice of axes, and sometime<
in terms of particular units of length and of velocity. The use of special units permits the math-

ematical developments to be made in compact form; but the equations may not be dimensionally
balanced. It is to be understood that the formulas, if too specialized, may always be general-
ized by substituting kia,kix by kyr for 2,2,y,1,als0 k,w, ko, k)i, for w, ¢, s, and kyu/k,,
kz'v/kl, k,q/k,, for u,v,q, where k, and k., are any real numbers, provided these changes

are made consistently in all formulas. Velocities are thereby changed in the ratio k, /k,, since
u, ¥, ¢ are then given by the original expressions each multiplied by &, /&,; and all linear
dimensions similarly become 1/k, times as great. Even the velocity at infinity is changed in
the ratio k,/k,; and the kinetic energy in a layer of unit thickness perpendicular to the planes
of flow or T, is multiplied in proportion to velocity squared times area or hy 1/k22. The dimen-
sional balance may then be restored, if desired, by assigning the proper dimensions to £, and
k,. One type of change without the other may be made by letting either &, or £, be unity.

In addition, of course, the axes may be moved into any other position by means of the
usual formulas. The method of doing this in terms of z is important and was explained in
Section 25. To displace the flow and all boundaries through distances 4, in the z-direction
and A, in the y-direction, without rotation, it suffices to replace z by z~4, and y by y=h, in
all formulas, or 2 by z~4 where & = & +ih,. To rotate everything through an angle x about the
origin, which requires rotation of the axes in the opposite direction relatively to the flow field,
replace z by z cosa + ysina and y by -z sine + y cosa or 2 by ze™ **, and v and v, there-
fore, by u cosa + v sina and - usina + v cos a, respectively, in all formulas. To effect
first the rotation, about the initial origin, then the displacement, substitute (z-A)e™2 for z;
or, if 2 = f(w), take 2 = & + ¢ %@ f(w).

Where w (2) contains a real multiplicative constant, often 4 or U, it is to be understood
that reversal of the sign of this factor merely reverses all velocities, with an accompanying
change of sign of ¢ and  but without any change in the geometrical equipotential curves and
streamlines and without change of the pressure. Arrows drawn on the streamlines in the plots
refer in each case to a positive value of this constant.

It should be remembered that states of flow of an incompressible fluid may be superposed
freely to form new states of flow. The potential, stream functions, and velocity components

add algebraically, the velocities themselves, vectorially. The pressures and forces, however,




are not additive. Out of all the cases that can be constructed in this manner, only the most
interesting will be mentioned.

The section on units in Chapter I, Section 18, may be noted.

The older convention as to the signs of ¢ and ¢ described in Sections 8, 13, and 18,
may also bo noted; it is often encountered in the literature. Kormulas based on this older
convention may be obtained by changing the sign bofore every symbol representing a velocity

component,

SOME SIMPLE TYPES OF FLOW
35. UNIFORM MOTION
w=Az+C, A=a+1d

where a and & are roal constants and € is another constant, real or compiex. This transforma-

tion was discussed mathematically in Section 24. Since w = ¢ + ¢

¢ =azx-by, o =br+ay
dw
us-a, v=b g=|2| 141 = (224 02"
dz

The flow 1s thus one of uniform translation. The flow net, illustrated in Figure 40, corsists
of straight lines.

If the fluid is moving at velocity U in a direction inclined at an angle « to the negative
z-axis, asin Figure 41, A = U,u=-¢ =~ U cosa ,v = b =~ U sin a, and, with omission of

the physically meaningless constant C,

w=1U(cosa ~isma)z= Yze it {35a]

(For notation and method; see Section 34; Reference 2, Section 6.0.)

y

Figure 40 ~ Flow net for uniform flow.
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Figure 41 — Definition of U and a in
Equation {35a].

Figure 42 — Flow net in a right angle:

w= Az?.
36. HYPERBOLIC FLG¥
w= 4322 (36a]
where A is a real constant. Then ¢ + ¢ ¢ = 4 (2 +1y)?,
¢ =A(@2-y?), ¢ =2dzy (36b,c]

Both the equipotential curves and the streamlines are rectangular hyperbolas, the former with

asymptotes inclined at 45 degree to the z- y-axes, the latter with the axes themselves as
asymptotes.

In the conjugate flow
$'=24zy, y'=A(y?-2?) [36d,e]
In both cases ¢ = = at infinity, ¢ = 0 at the origin.

The flow net is the same in all quadrants. One quadrant is shown in Figare 42. It may
be used to give an approximate idea of the flow pasi a square corner.

The two conjugate flows differ only in that the flow pattern is rotated through 45 degree.

(For notation and mothod; see Section 34; Reference 1, Article 63; Reference 2, Section 4.70.)

37. LINE DIPOLE

w=F , it is a real constant, [37a]
z
6 4igm L p@E-ty)  pz ..
z+iy  (e+iy) (z-iy) z?+y? z%+ 2 '
{37h,c]
u " ry
¢ 2242’ 22 492
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du I 1 -1 i 137d)
I] ] -«—-, = ul= — " = 72— %
or
u p 1/2
= o =, = (22 +y?) (37e,f]
zh+ys oy

Thus 4 = « at the origin, where 2 = 0 and a singularity occurs.

In terms of polar coordirates r and @, with @ measured from the z-axis so that 2 = r cos 0,

y =rsin g,
pcos g psin @

= , th=-

r r

(37g,h]

The equipotential curves and the streamlines are circles through the origin; their equa-

tions are obtained by assigning a constant value to ¢ or ¥ in Equations [37b,c] or in the equiv-

alent equatiors
A p 2 M2 .

The radius is u/ (2 |¢]), or u/ (2l¢4]). See Figure 43,

This is the flow due to a uniform line dipole or doublet. It is obtained in more elemen-
tary fashion in Section 15. TI'he axis of the dipole is here the z-axis, which represents a plane
of symmetry. The constant u ropresents twice the point-dipole moment per unit length; it may
be called the lino-dipole moment. The dipole axis is regarded as directed toward the side of
maximum &: if g > 0, this is here the positive z-axis, if p < 0, it is the negative z-axis.

The components of velocity in the directions of z and y, or of r and @, respectively, aro

z? —y? 2uzy cos 4 sin 6

U=y 4 v = r4 H ’l,=#_rz", 'Io=u r2 [37k,l,m,n]

r

The conjugate flow represents a line dipole with axis along the y-axis, directed toward
negative y if ¢ > C. It 15 also obtainable from the transformation

i ] z .
,,,=_.i‘,¢,=..ff_2{, l)/,.-=_“.? {370,p,q]
2 r r

More generally, the transformation

A0
we L (37¢]
2-20

where y an! a are real and 2z, =z, + iy, represents a line dipole located on a line cutting the
zy-plane at (zg, y4), With its axis inclined at an angle « to the positive z-axis; see Figure 44.
Since

et cosa + isina (cosa +isina)lz-zy-i(y=-y,)

2-2, 2!—3.'0 +i (.1/-!/0) (z’zo)2 + (3/‘3/0)2
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Figure 43 —~ Flow net for a line dipole: w = p/z,

by sabstituting in terms of polar coordinates with origin at (24 ¥g) SO that

Y
r= [(:r—a:o)2 + (y~y0)2] yE=Zy = rCOS 0, y -y, =rsing

it is found that

cos (0 - ) sin (@ ~a

$=up ___ﬁ_r____’ ("=-u“‘-(",~—2 [37s,t)
cos (0 ~a) 8in (4 ~a)

K I A e {37u,v}

The singularity now occurs at z = 2g» O 8L (¥q, ¥4), and the plane of symmetry passes through

Zo, ¥y and is inclined at an angle a to the z-axis; these facts verify the statement made as to
the location «ud orientation of the dipole.

The geometrical properties of the transformation are dsocussed in Section 24.

(For rotation and method; zee Section 34; Reference 1, Article 63; Reference 2,
Section 8.23.)
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y (zy)

{(Z59p)

[37!‘] 3

38. LINE QUADRUPOLE

where A is a real constant. If z = reia,

b +id =A(rei6)_2 =={51 (cos 2 6 - ¢ sin 26)

4 4 41 ¥
¢ =5 cos 20, 4 = ~—8in 26, f=tan™" —
r r z
dw 24 . 24
~ e e =22 _.30___“_ . il
utiv=——=-—3e e rs(cosso i sin 36)
hence
24 24
u=;?cos30, 'v=r—3— sin 3¢
de| 24 %
— e, 2,.2
7=‘dz —r3’r=(z )

= Figure 44 - Deunition of a, 2., y,, in Equation

(38a]

[38b,c]

{38d]

{380,(]

(38g,h]

This type of flow can be produced in the limit out of that due to two opposing dipoles

placed close together, hencz u.c name quadrupole. The origin is a singular point, a pole of

the second order.

The equipotential curves and streamlines are lemniscates. The first quad:ant of the

flow net is illustrated in Figure 45; other quadrants are geometrically similar, with changes

of sign in ¢ and ¢ that are easily determined.

( For notation and method; see Section 34; Reference 1, Article 63.)
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Figure 45 ~ Part of flow net for a
line quadrupole: v = 4/22,

39. FLOW IN AN ANGLE

/a

w=Az [29a)}
where 4 and « are real constants and & is positive. If z = re’,
d+iy = A(reie)”/a= Ar7/a (cos 7 Tf‘ +ising ;0')
. 0
b = Ar™® cos o -g , U= Ar™ sin 4 s (39b,c]
. n Z_ I~y
-u+w=3—’:=A;-z°' r !]=Az"r°‘ (39d,e]

The origin is a singular point, unless n/a is an integer. If & > r, dw/dz becomes
infinite at 2 = 0. In any case, as z goes round the point z = 0, the amplitude of w increases by
(27)n/a and that of dw/dz by (27) (/& - 1). Hence, if 7/a. is not an integer, both w and dw/dz
are multiple-vaiued in the neighborhood of z = 0 or z = y = 0. In applications, therefore, a
boundary must be introduced excluding the origin and also extending to infinity, in order to
make dw/dz and the components of the velocity single-valued.

The diagram of the equipotentials is the same as that of the streamlines but rotated
through an angle %/2,

The principal application is to represent the flow between two planes meeting at ¢n
angle of aradians. On one plane let @ = 0 and on the other 9 = « ; then ¢y = 0 on both plunes,
and they cut the zy-plane along a streamline. On these planes ¢ =  A4r"/&,

One sector of the streamline disgram for &« = /3 is shown in Figure 48; that for

a = 37/2 is shown in Figure 47.
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Figure 46 — Streamlines in an angle of Figure 47 — Streamlines around a right
a=n/3 radians: w = A23, angle: « = 37/2, w = 223,

If a=2n, tho flow is around the edge of a semi-infinite plane. In this case

[

w=A2Y2 ¢ = Ar1/2 cos 50, Y = Arl/2 sin—g, q =-g- r 2 (39f,g,h,i]

Streamlines for this case are shown in Figure 48,

A uniform flow parallel to the plane may be added, producing streamlines as shown in
Figure 49; see Cisotti, Reference 24.

The mathematical transformation 2°= 2", where n is real, is useful in constructing
transformations for special purposes. Geometrically, it merely cotates all radii from the origin,
except the positive real axis, about the origin as center until on the z*plane they make an
angle with the positive real axis n times as great as on the z-plane. The change is like the
opeaing or shutting of a {an. If n is an integer, the z-plane is mapped = times onto the z%plane;
the mapping is backwards if : is negative. If |n] < 1, the entire z-plane is mapped onto a
secter of angle 2nn radians. If n is not integral, the transformation is many-valued, with z = 0
as a branch point. In any case, circles centered at the origin transfcrm into arcs of similar
circios,

The more general uansformation 2°= Cz” also stretches all radii from the origin in a
ratio equal to |C| and rotates everything through an additional angle equal to amp C.

(For notation and method; see Section 34; Reference 1, Article 63; Reference 2 Section
6.0.)
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Figure 48 — Symmetrical streamlines around the edge of a semi-infinite
plane: « =27, w=Az1/2,
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Figure 49 — Asymmetric streamlines around
the edge of a semi-infinite plane.
(Copied from Reference 24.)
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40. LOGARITHMIC FLOW

w=-41Inz [404]

Let 4 be real. Then, if 2 =2 + iy = retd

aS+id:=-.‘lln(re‘o)=—Alnr-iAO

A = -1 e
whero r = (z2+y2) 0 = tan y.%

U=—

140b,c)
d==Alnr,tr=-A0
A A
= d—w 2 e e X wme  m— e-‘o [40d}
F] 2 r
cos §, v =-"'1T sing, ¢=4 [40e,f,g]
r

The origin, 2 =0 or z = y = 0, is a singular point.

Line Source

The equipotential curves defined by ¢ = constant are circies about the origin, each

defined by a constant value of r or by

22+ y? = o—26/4

The streamlines, defined by ¢ = constant, are radial lines from the origin; see Figure 50.

This is the flow due to a uniform line
source, as described in Section 15. The vol-
ume emitted by the source per second, per
unit of its length, is 27rq¢ = 2 4. The veloc-
ity becomes infinite as the origin is approach-
ed and is urdefined at the origin itself. This
type of flow is physicaliy impossible in in-

z compressible, indestructible fluid, but it is

4
N

—

Figure 40 — Flow net for a line source

orvortex: w=-/1Inz
(Copred from Reference 7)

useful mathematically in building up by
super-position the solutions for more com-
plicated problems.

The stream function ¢ is many-valued.
In going around the origin in the positive
direction, @ increases by 27 and ¢ decreases
by 27 A. Thus the vslume of fluid emitted
by the source per second and per unit length,

represented by 2z 4, is equal to the decrease

-~




- -y

in U upon going positively around any closed curve that encircles the source. The decrease
in ¢ is also equal to the volume of fluid that flows outward across the cylinder represented
by such a curve, between two pianes of flow unit distance apart.

It may be noted that, if the flow due to a line source located at a point P is superposed
upon another flow in which the velocity at P is finite, the resultant streamlines approximate
more and more to those duc to the source alone as P is approached, since in the flow due to
the source ¢ + « at P,

The equations could be balanced dimensionally by writing w = ~ A In (2/a) where a is
a constant having the dimension of length. Then r is replaced by r/a in &, which merely adds
a constant to all values of ¢.

Line Vortex

For the conjugate flow the circles become the streamlines and the radii the equipoten-

’

tials. The potential ¢, stream function ¢’ and velocity are given by

¢' == 40, U'=Alnr [40h)l]
w=-4sing, v=Acosg, q=4 (405,k,1]
r r r

The corresponding complex potential is
w=¢'+iy’'=id1nz (40m)

It is now the potential ¢ that is many-valued; in going counterclockwise once around the origin,
¢’ charges by -27 4. The velocity, however, is single-valued, as is dw/dz, except at the
origin; for ¢ + 8nn has the same space derivatives at any point as has ¢ itself. The circula-
tion, taken around any closed curve encircling the origin once, is I =274 Treated as an

idesal case, the flow may pe regarded as due to a line vortex at the origin, as described in
Section 15.

In this type of flow, the singular point can be excluded by inserting a cylindrical
boundary along any one of the circular streamlines. Then ¢’ and v’ cepresent a physically
possible irrotauional circulatory motior about this cylinder. The circulation vanishes taken
around any closed path that does not enclose the cylinder. If the path goes positively once

around the cylinder, however, the circulation I' around it is 2z4. Thus the constant
4=L
2n

If the flow is steady, the pressure is given as usual by the Bernoulli equation.
The velocity increases without limit as the vortex is approached, and is undefined at
the location of the vortex itself, Hence, if the flow due to a line vortex at P is superposed

upon another flow in which the velocity is finite at P, the resultant streamlines near
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(=9
/ Y,

(a.b)

Figure 51 — Symbols for source or

vortex at (a,b). Figure 52 — Streamlines for a superposed
line source and vortex:
==(A; ~id;) In 2.

approximale those due to the vortex alone and consist of closed loops surrounding P; as P is
approached, these loons approximate circles centered at P.

To locate the source or vortex at (a,b) instead of at the origin, it is only necessary to
replace in the formulas 2z by 2-a~ib, hence z by z-a and y by y -, and to write

%
r=l(z-a)? +(y-6)2)", 8 =tan”! [(y~0)/(z~a)]
Thus ¢ is measured from a line drawn in the direction of positive z, as illustrated in Figure 51.
Combined Source and Vortex

A line source and vortex may be imagined to coexist on the same line. The combined
potential and stream function and the resultani velocity may be written

$==~AInr-A,0, i=-4,0+4,Inr {40n,0]
A A %
fl,=-;:‘, 99 =2, f1=-}—(A§+A22) {40p,q,r)

The corresponding complex potential is w = - (4, —i4,)In 2. The streamlines are equiangular
spirals defined by 0 = (-1,/A,) Ins + constant, as illustrated in Figure 52. The equipotential
curves are a similar set of spirals turning in the opposite direction.

Rigid walls might be inserted along any one of the spirals on which ¢ is constant. If
walls are insurted along n of them, chosen to be equally spaced about the axis, a first stop is
taken toward the idealization of a radial centr«fugal pump; see Section 97.
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A different type of flow botween such walls, in which there is no source on the axis
and hence no net vutflow of fluid, was derived by Lowy from the transformation w = 2™ %"

where m and n are roal constants.

Geometrical Properties of the Transformation 2’ =1n 2

fz=re'f0ardz’=2"+ iy’ then 2“=1Inz, y*= 0. If 8 is kept in the range - nr <0< n,
the entire z-plane is mapprd onto a horizontal strip of the 2 “plane extending fran but not in-
cluding y* = - 7 up to and including y*= 7. The negative half of the real axis of z is mapped
onto the upper edge of the strip at y’ = x; the positive half becomes the parallel line y“= 0.

All radii from the origin of 2, in fact, bocome lines parallel to the real axis of 2%, each defined
by a certain value of 6 or y*. Circles about the origin of 2, on the other hand, being defined by
fixed values of r or of z’ become lines parallel to the imaginary axis of 2% the annulus hetween
two such circles becomes a strip in the same direction. All other straight lines on the z~plane
correspond on the z-plane to logarithmic spirals with focus at the origin.

The transformation can be visualized by imagining the z-plane to be cut just below the
negative z-axis and partially shut up like a fan, while the origin is spread out over a width 2~
and simuitaneously displaced to minus infinity,

By selecting for 6 a different range of magnitude 2, the strip may be displaced verti-
cally into any other position. Or, if 8 is restricted to a range of widthe , where 0 < & < 2,
the corresponding sector of apical angle & is transformed into a horizontal strip of width « on
the z “plane. Finally, if g is allowed to range without limit, the z-plane is mapped once on
every successive strip of width 27. The compiete transformation is thus infinitely many-valued.

Sometimes it is convenient in such cases to include both boundaries of the transformed
area. Thus, if - 7 < @< n, the negative z-axis is used twice; with 8 = — r it transforms into

the lower boundary of the strip at y’= - 7, with @ = », into the upper boundary at y "= .

A simple closed curve not surrounding the origin on the z-plane becomes a simple closed
curve on the z-plane, but one that surrounds the origin becomes an endless curve that is per-
iodic in the y”direction, with a period 2x, provided amp z is allowed to increase indefinitely
as the z curve js traced repeatedly in the same direction. If amp 2z is restricted to a limited
range, a closed curve about the 2" origin becomes an open one on the z-plane, traced once for
each traversal of the 2’ curve.

The more general transformation, 2= Aln (az) = Alnz + Aln g, includes also rotation
about the origin through an angle equal to amp 4, a uniform change of scale in the ratio |4],
and the displacement represented by 4 In a.

(*or notation and method; see Section 34; Reference 1, Article 64; Reference 2, Section
8.11, 13.10, 13.20, 13.21, 13.33.)
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LINE SINGULARITIES IN COMBINATION
41, LINE SOURCE AND SINK; LINE YORTEX PAIR

w=A[ln({z+¢) -In (2-c)] {41a]

Or \
! 2 =c coth ¥

<¢
For simplicity, let the constants A and ¢ be roal.
Writing

i0 ig

2-cnrye 1 z+c=r,€ 2

as illuscrated in Figure 53, and 2z = 2 + iy,

r
w=¢ +id=dIn2 +i,»1(02-01),

r

1

r -1 ‘ZCy
=4 ln;%, W ==~A(0,-0,) = ~Atan Tigocd (41b,c]
dw e—i02 e-;f)l
~u+ v =—=1 ( - )
az f2 f,-
! cos 6 22-y2 -2
" A(cos 9, - is__’_l) =24c¢ _2_‘1/_5_ (414
" Ty W)
7} in 8 4Ac =
0= A sin@; sin 2) z2 2y [41e]
" T Ty T2

Circle 2
Circle |

Figure 53 — Illustrating the variables for Sections $1-42.




wheco " "
o= [e-e) + 97y = [+ )2+ y? ] [41f,g)

Here sin 0, = y/r,, cos 6, =(z~c)/r,, sin 0, = y/r,, cos 9§, = (z +¢)/r, from which tan (9,-6,)
may be found. Also

q= (uz + vz)% =2c4 141h)
"7
since

(:::2—3/2--02)2 +az?y? =[(z+c)?+ y?) [(z~0)? + ¥

On the 2-axis, u = 24¢/(z2 ~c2); on the y-axis, u = - 24c/(y? +c?).

Singularit.es occur at (¢,0) and at (-¢,0), wheri- dw/dz + .

The ¢ curves are circles with centers on the z-axis, each enclosing one of the singular
peints. The ¢ curves are circular arcs with centers on the y-axis and ending at the singular

points, The equations of these curves can be writlen either

f2 /3
4 , ..
r_l.=e¢/ , 91_92=_Z (41i,j)
or
2
(z—ccoth%) +y?=c? csch2% {41k}
5 \2 1
2 c Lﬂ) o2 pgp2 X 11
z +(y+ co 1 c? csc 1 (411)

'The first of these equations in z and y is obtained by substituting from [41f,g], squaring,
dividing by ¢®’4, and rearranging. The second equation comes from the second expression
given for .

The flow net is illustrated in Figure 54.

The curve for ¢ = 0 is the y-axis. If 4 >0, & + + = at (c,0) and -~ at (-¢,0).

The function ¢ is many-valued with a period 27 |4]. As the point (2,y) goes positively
oneg around (e,0) without encircling (-¢,0), 6, increases by 2« and ¢ changes by Ad = - 2n4;
if the point encircles (-c¢,0) instead, A 6, = 27 and A = 274. If, however, both singular
points are encircled, or neither, then Ay = Q.

The cu ve for ¢ = 0 (or — 274 or 2rnd) is the z-axis outside of {¢,0) and (~¢,0), provided
g, and 6, are measured from the same reference radius, as shown in Figure 53. Assume 4> 0.
Then successively smaller values of ¢ are represented by the circular arcs above the axis
taker. in descending order. On the z-axis between (c.0) and (-¢,0) 6, =n, 6, = 0, ¢ = ~nd.
The arcs below the z-axis represent successively smaller values o{ ¢y dswn to - 224, for which
the curve is again the outlying part of the z-axis.

When ¢ is the potential, so that Equations [4¢1d,e] hold, a uniforn line source occurs
at each singular point, one being a positive source and the other an <qual sink; if 4 > 0, the
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Figure 54 — Flow net for equal line source and sink, or for a pair of equal and
opposite line vortices, or, in Section 42(A), for the circulating flow
around and between two circular cylinders.

(Copied from Keference 1.)

positive source is at (¢,0). The streamlines run from the source to the sink, and the stream
function ¢ i3 many-valued. There is flow symmetry about the z-axis, mere geometrical sym-

metry about the y-axis.

Vortex Pair

In the conjugate flow, it is the potential ¢’ = ¢ that is many-valued in the manner just

described; the stream function «/’= - ¢ is single-valued. Consequently there is circilation

of magnitude
F==-A¢"=2s4

around any curve encircling (¢,0) once, or of magnitude —-2x4 if the curve encircles (-¢,0)
once, whereas the circulation vanishes around curves encircling both points the same number
of times. A 3.miple line vortex may be supposed to exist at (¢,0) and another of equal strength
but opposite sign at (-c,0); theso are called a vortex pair. The components of velocity for
this case are u” = ~ v, v"= u, where u and v ars given by [41d,e]. There is flow symmetry with

respect to the y-axis, geometrical symmetry with respect to z.
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Figure 55 — Streamlines for a vortex parr. The arrows indicate the direction of
motion of the vortices if they move with the fluid; see Secticn 41.

—

If the flow is assumed to be steady, the vortices are stationary. Alternatively, each
vortex may be supposed to move with the average velocity of the fluid in its neighborhood, as
a vortex does in a real fluid; in the present case, tiis velocity is simply that due to tne other
vortex, or, by [40l], U = A/2¢ = I'/4 ne, directed toward negative y if A and I" are positive.
The pair of vortices thus advances without change of the distarce between them; see Figure 55,
wuere the direction of advance according to this assrmption is shown by an arrow. The formulas
will continue to represent the motion at each instant provided the axes are allowad to move
with the vortices,

A pair of vortices of the same sign was discussed by Greenhill26. Trains of vortices
were introduced by von Karman?7; the streamlines for a typical Karman27; the streamlines for
a typical Karman colum or ““Karman street’ are shown in Figure 56.

The transformation w = A [In(z +ic) - In(z - ic)] represents the same flow rotated
through 90 degres, with the source and sink or the vortices at (0,% ¢).

It may be remarked aiso thau toward infinity

In 226 . ln(1+2> —171(1—9-)=-2-€ +
z-c¢ 2 z 2

so that toward infinity the flow due to either a source and sin

= W
N‘J(}w

or a vortex pair approximates
that of a dipole; compare Equation {37a].
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Figure 56 — Streamlines due to a Kdrmsdn vortex train or “‘street.”’
(Copied from Reference 28.)

Further Geometrical Notes

Any given ¢ circle has a radius R¢ = ¢ cseh |(¢/A4)|, and its center is at @ =c coth
(¢/A4). Thus the points (¥ ¢,0) are inverse points withrespect to each of these circles; for,
the distances of the points from the center of any circle are d, = |c ~ ¢ coth (¢/4) | and d,

=|~c ~ccoth (6/4)}, and d, d, = c? [coth? (¢/4) - 1] = R¢2 . The equation of the circle

might be written, from [41i],
1 9 ¢

lnr—zg-;i- = % sinh IE; [41m]
the sign depending upon whether 1, or r, is the greater.

The ¢ arcs, on the other hand, have a radius R¢ = ¢ csc |(4/A) and are centered at
y = - c cot (¢/4). The region between any two of these arcs is mapped onto a strip of the
w-plane lying between the corresponding values of . The entire z-plane is thus mapped onto
a sirip of width 224, between ¢ = ~ 74 and & = 7 4, and it is mapped again on each successive
strip of the same width.

Tha arcs for v =~ 7 A4/2 and ¢ =~ 37 A/2 are semicircles which together form a ciurcle
of radius ¢ centered at the origin and passing through the singular points at (% ¢,0). Thus the
transformation can also be used to transform the interior of a circie into an infinite strip. Tre
strip is #}4| wide and parallel to the real axis of ¥; it can be shifted so as to lie between the
lines ¢ = £ 7 A/2 by adding ¢ 7A to the value of w and hence » 1 to that of &, and, since i »
= In(~1), the transformation can then be “ritten

w=A[ln(c+s)~In (c-2)] {41n]
i(0, - ,
tiere amp (c-2) has been chosen so that ¢ - 2 = e‘( 77 and In (¢~ 2) =1n (2~¢) - i, a8
shown in Figure 57; thus now ¢ = 4 (0, ~0, + x). The quantity # - 9, also equals the internal

’
angle ¢, between c0 ans cz measured positively clockwise; in terms of this angle,

20
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= AL2

e = A/2

Figure 57 — Diagram to illustrate the transformation of the interior of a
circle into an infinite strip, by Equation (41n].

c-s=r ¢ 0 and u=4(8/+9,).

The z-axis between % ¢ now transforms into the entire real axis or ¢ = 0. The trans-
formation can be visualized by imagining the interior of the circle to be drawn out into a strip
as the points ¢ and - ¢ recede in upposite directions to infinity.

(For notation 2nd method; see Section 34; Reference 1, Article 84, 155; Reference 2,
Sections 6.50, 8.22, 13.30.)

42. CIRCULATING FLOW: CYLINDERS, VORTICES, A WALL

The flow due to a vortex pair, as described in the last section, maybe used to represent
a circulating flow arcund parallel cylinders. ‘{ere the potential and stream function are ¢ *
=i, ¥ = ~ &, but it will be convenient to drop the primes. Then the new ¢ and  may be

derived from the modified transformation
w=d+id =i4{ln(z2-c)-1In(2+c)] {42a])

whence, in the notation of the last section,

4
== A(0;-0y), b =-41n-2 [42b,c]
1
sin §, sin 8 d4dcx
u=—A( 1 2)=- = [42d]
fl r2 fl f2
cos §, cos @ z2-y?-c?
w088 _ ___.__2) - 240 L% [42¢]
\ ry 7, rfr,




where
~ Y4 %
r, = l(z=0)* + y217, r,=l(@+c)? + y2]

and the angles 6, and ¢, are shown in Figure 53. The valueof ¢ is again given by Equation
(41h]).

The equipotential curves are now the circular arcs ending at (£ ¢,0), while the strec..-
linos ure the circles about these points; the equations of the arcs and circles, respectively,
are, from [41k,l],

é \? é
z? +(y+c cot-j) = c? ¢sc? i R¢2 [42f}
1\2 W
(z + ¢ coth -‘54—) +y?=2c2 cschzz’ = If¢2 42g)

where Ir‘¢, Ry, denote the correspending circular radii. The points (¥ ¢,0) are inverse points
with respect to each circle; and the equation of any ¢ circle can also be written 1n terns of
geomelrical quantities, from {41m], as
N2 = & giph~! = (42h]
" R‘l’

If 4> 0, & has everywhere the opposite sign to z, whereas ¢ is many-valued. If ¢ is
assumed to be zero on the z-axis wherever | 2 | > ¢, it decreases in passing above the points
(% ¢,0), becomes — r .1 on the z-axis between these points, and decreases further to — 274 on
returning below the points (¥ ¢,0) to the starting point, where | z | > ¢. Thus there is circula-
tion of magnitude 1" = 2 » 4 about (¢,0) and of magnitude -2~ 4 about (- c,0).

By inserting cylindrical boundaries 2iong one or two of the ¢ circles. a number of cases
of motion with circulation can be handled. In order to apply the forraulas to a given case, «t
is necessary to find 4 and ¢, and the location of the origin of coordinates, in terms of given
quantities,

A. Two Circuviar Cylinders

Two circular cylinders noither enclosing the other, with axe$ [ distance apart, may be
represented by causing two of the ¢ circles to coincide with the circles representing the
cyhnders. For exarple, the circles may be those labeled 1 and 2 1n Figure 54, where number i
encloses the point (¢,0) and number 2 the point (~¢, 0). Let the given circulation around any curve
encircling cvlinder number 1 just once in the positive direction, but not cylinder number 2, be
[', and that around any curve encircling number 2 only, - I'. Let ¢ have values ¢ and ¢, on
the two cylinders, respectively. Draw the z-axis from 2 toward 1, as in Figure 54. Then A -
i"2a.

In this case ¢, has the sign of 4 or ', and ¢, has the opposite sign; for, 7, /r, <1 near
cylinder 2 and 7.7, > 1 near cyvlinder 1. If 4 > 0, ¢ increases from 1 to 2, correspunding to a

downward flow between the two cylirders. Hence, whatever the sign of 4,
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/ y
R, =-ccsch %13 y B, =ccsch %—2 {(42h,i1]

vy . L’12 )
z, =~ ccoth = z, =- ¢ coth = {42j,k]

or

2, = o2+ B2, 2, = - \Jo? + B2 (421,m]

Then D =2, ~ Z,, and, after eliminating all radicals by squaring twice,
2 2
4c2D%= [1)2 - (R, + /e,_)] [02-(1?1 -132)] (42n)

This formula fixes ¢ when D, R, and R, are given, and the valuas of z, and z, then locate
the origin of coordinates.

The singular poiats (% ¢,0) lie inside the cylinders. Hence a valid representation is
obtained of purely circulatory flow between and around two parallel cylinders. The difference
¥, -y, represents the volume of fluid that passes between them per second, per unit of their
Jength,

B. Line Vortex Qutside a Circular Cylinder

If cylinder number 1 is omitted and the formulas are continued down to the point /¢,0),
the ideal flow is represented due to a line vortex outside a rigid cylindrical boundary of
circular cross-section. The vortex, located at (c,0), is at a distance A& from the axis of the
cylinder, which is located at (z,,0), where & =c - z,. If B is written in place of R, for the
cadiuz of the cylinder and o, as before for the value of & on it, using [42i) and {42mn]
(Figure 58),

=C+yC°+ y C= =

& 5—s K2 -R2 K2+ R?
R=c csch-zg, A 2 Rz oh 1y 32 = = ok [4201P’q1r]

The last equations serve to fix ¢ and z, when A and R are given, and &4 =I'/2n, where I" is the

assumed circulation around the vortex. The circulation around a curve encircling the cylinder

once in a positive direction is ~I".

R
\%< J azc\ c \Qﬁ *
@LV—_—Z[IJ‘“
2

Figure 58 — {llustration of a line vortex of circulational strength I" near a
circular cylinder with circulation I'“— " around it; see Section 42B.
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The term ~i4 In (2 +c) in the expression for w as given in [428] represents the potential
due to an image vortex of equal and opposite strength iocated at (-¢,0), or ot a distanco A’
from the axis of the cylinder where A”= ~¢ -z, = m—’ —c. Thus Ak’ = R2?, so that the
vortex and its image are located on inverse lines with respect to the cylinder,

The stream function has the same sign as I’ or A near the cylinder, the opposite sign
near the vortex.

If the vortex is assumed to move with the fluid, it revolves around the cylinder at the
fixed distance 4 from its axis, in the opposite direction to that sugzgested by its own circ.la-
tion and with a linear velocity equal to the fluid velocity caused by the image vortex in the
cylinder, ot with a velocity A/2cor I /4rc. The formulas continue t -aspresent the flow at
each instant provided the axes rotate with the vortex, as does also the image vortex in the
cylinder,

The circulation around the cylinder can be changed by superposing the flow due to
another imaginary vortex located on the axis of the cylinder. Let the circulation due to this
vortex be I'". The total circulation around the cylinder is then '~ I", and thus vanishes if
I’’=1". From {42b,c] and (40h,i], if r, @ ace auxiliary polar coordinates with origin on the axis
of the cylinder and coordinate axis parallel to z, as in Figure 58, potential and stream function

for the resultant fiow are:

¢=—A(61—02)—£-' 9, ¢=—Aln2+£~inr {48s,t]
2n ry 2n
The added components of velocity are u”= ~ I'“sin /(2nr),v"= " “cos 6/(2nr). The added
term in w is (i/27) [ In (z-2,), where 2 -2z, = re 0,
If the original vortex is now assumed to move with the fluid, it revolves about the
cylinder as beforo but at a linear velocity [*/(4rc) - " /(4nh). The revolution is clockwise
if '* < A [' /¢, otherwise counterclockwise; if I'“= A I'/¢, the vortex is stationary.

C. A Cylinder of Radius R, enclosing one of Radius 2,

For this case, use is made of two circles lying on the same side of the origin of
coordinates. Let the circulation around the inner cylinder, in the space between the two, be
. Let the z-axis be drawn in the direction from the axis of the inner cylinder, called number
1, toward the axis of the outer, cailed number 2; and let their axes be at z, and z,, respective-
ly. Lot ¢ have values ¢/, and ¢, on the two cylinders, respectively. Then, using [42h] and

(421] for both cylinders,

'/’1 . ‘rll2
R, = ~ccsch 1 R, =—-ccscn—z- >R, [42t,u]

2 2 42v,w
a:1=\/c +R2 zynJ2+ R > 2 [42v,w]
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Figure 60 — Representation of a line
vortex within a cylindrical shell.
See Section 42 (D).

Figure 59 — Streamlines between two
tigid cylindrical surfaces, centered
at z,, z,. See Section 42(Cj.

Here the distance D between the axes of the cylinders equals z, - z , but c is found to be
given by {42n] as beiurs, and 4 = ['/27. The value of z, or z, locates the origin of coordi-
nates. In the region between the cylinders ¢ and A have opposite signs.

The formulas represent circulating flow in the space betwzen the two cyl'nders. A

case is illustrated in Figure 59.

D. Line Yortex Inside a Cylinder

Ia the case just described, if the inner cylinder is omitted and the formulas are contin-
ued down to the point (c,0), the ideal flow is represented around a line vortex inside of a rigid
cylindrical shell, The vortex is at (c,0) and there is circulation " = 274 about any closed curve
lying inside the shell and encircling it once in the positive direction. If R is written for the
radius of the shell, v/ instead of ¢, for the value of ¢ on it, and & for the distance of the
vortex from the axis of the shell, which ;s at (z,,0), then & = z, —¢ and from [42u] and [42w],

Y/
R = - ccsch (;:), h=c2+R? —c, c= (R2--A2)/2h (42x,v,z]

which fixes ¢ when R and A are given. The origin lies outside of the shell, at a distance
} + ¢ toward negative z from its axis, and inside the siell & has the opposite sign to 4; see
I*igure 60.

If the vortex is assumed to move with the fiuid, it revolves about the axis of the cylin-
drical shell at velocity A/2¢, as in Case B; but here the direction of revolution is the same
as that suggested by the circulation around the vortex. If it is located on the axis, the vortex

is stationary.




Figure 61 — Streamlines between a
circular cylinder and a wall.
See Section 42 (E).

E. Cylinder and Plene Wall

By expanding the outer circle in Case C until it coincides with the y-axis, circulating
flow is represented between a circular cylinder and a plane boundary or wall. Writing £ in-
stead of £ for tho radius of tho cylinder, H for the distance of its axis from the wall, and 7
instead of ¢/, for the value of v on it, it is found that # = =, and

v
R = -c csch (—'-Ag), H=\c2+R2, c=H?-R2 [42a’ W, ¢’}

which fixes ¢ when R and / are given. The circulation around any closed curve encircling the
cylinder positively.once but not crossing the wall is I" or 2r4.
Since & = 0 on the wall, - ¢, represents the volume of fluid that passes between unit

length of the cylinder and the wall per second, taken positive in the direction of counterclock-
wise motion around the cylinder. See Figure 61.

F. Line Yortex and Rigid Wall

If, in Case E, R is allowed to shrink to zero, the flow is represented due to an ideal
line vortex parallel to a rigid wall and distant /{ ot ¢ from it. The wall is at z = 0; the vortex
is at (#,0), and the circulation around it is I" or 2r4. The terms in ¢ and ¢ that involve refer-
Ance to (-#,0) can be regarded as arising from an imnge vortex at (-//,0).

The velocity al the wall, from [42e], in which now

c=Hy, ry=r, = (¥ +H?)¥

24H r n
y2ei? T TG A

If the vortex is again assumed to move with the {luid, it moves parallel to the wall with
the velocity due to the image vortex, which is A/2/ or I'/(4n I1), toward negative y if 4 > 0.
The axes must be assumed to move with the vortex,

9%
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The forces on the cylinders in any of the preceding cases, when the motion is steady,
are most easily found from the Blasius theorom, which will be proved in Section 74. When
only the two original vortices are present, from (42a)

2
(ﬂ‘12=-42(__1__ 1_)

dat 2-¢ 2+¢

Substitution for (dw/dz)? in Equation {T4g) gives, after a slight algekraic change,

; 1 1 1 1
X, ~iY, ==L 2§ - ]d
1t QPA [(z--c)2 c(z-c) +c(z+c)+(z+c)2 2

where X, and Y, represent z and y components of the force per unit length on any cylinder due
to fluid outside it, and the integral is to be taken around the circle representing the cylinder.

The integral is easily evaluated by the method of residues as explained in Section 30. If the

cylindor encloses the singular point (-¢,0) but not (c,0),

whereas all other terms of the integrand give zero. Thus

ap A* pI'?

X, -i¥, =
1Tty ¢ 4ne

where I" = 274 and represents the circulation around the cylinder. Since pI'?/4rc is real,

Y, =0, and the total force per unit length on the cylinder is

2
_er” {42d’]

L 4pe

If the cylinder encloses the point (c,0) instead,
dz
¢
(2-¢)

=92ni

and the sign of X, is reversed.
If another cylinder or a wall is present, as in Cases A, C, E, an equal and opposite

force acts on it. The force on a wall is easily verified by direct integration of the Bernoulli
term in the pressure.

If there is only an ideal iine vortex at the point (c,0), the reactive force may be imagined
to act on the vortex, but the formula for the force is correct only if the vortex is assumed to be
stationary, If the fluid and stationary vortex are inside a cylindrical shell, the force on the
shell is the sume as if an inner cylinder were present with a circulation I" around it equal to
that around the vortex.

The direction of the force on a cylinder or on the wall is in all cases such as to draw

it toward the other cylinder, or toward the wall or vcrtex, along the shortest path between them.
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In the extended example case considered under Case B, where a vortex is near a

cylindor having total circulation I'* - I" around it, v contains another term and

*

w_ 34 _i4 071

2 2-¢c 3+¢ Cn 2-z,

I

I

The poles at 2z = - ¢ and 2 = z, both lie inside the cylinder and contzibute to the integral. The
product terms can be treated as before; for example,

2 =2 1 1
(3-c)(2-2z,) c-2z,\2~C z-z,

The latter product, arising from two poles that lie inside the path of integration, gives zero
in the integration, as is always the case with included poles. The force on the cylinder is

thus found to be, using A = I'/2r where I" is the circulation around the vortex,

4nc o2 h

2 ol ok
ol pl'l
X =

A positive value of X, means that the force acts toward the vortex.
Finally, in the case of a vortex moving freely parallel to a wall as described under
Case F, the motion can be made steady without altering the force by imparting to everything
a velocity equal and opposite to that with which the vortex is moving. The fluid velocity at
the wall is then
r r H
Y= - —
dnll  n y*+H?

On the assumption of zero pressure at infinity, the force on the wall is, from {34h], in which
U =T/4aH here,

2 2 ¢7 2
1 L ¥_,2g4 1. (T (8 16 dy =0
P vh |y =5e T R T
2 4o H 2"\ 4n o\ H2 (32 4+ H?)

To evaluate the second integral, put y = /{ tan 6.

(For notation and method; see Section 34; Reference 1, Articles 64, 155; Reference 2,
Section 13.30, 13.31, 13.40, 13.41; for line vortex and cylinder, Muller?8 and Morris. 29

43 LINE SOURCE AND PLANE WALL

w=-A[ln(a+h) +1n (z2-4)] (43a]
A and A roal constants.
Seme problems are easily solved by superposing known types of flow.
Consider for example, a uniform line source in fluid that is bounded, at a distance A

from the source, by a plane rigid wall parallel to the source, as in Figure 62. If the flow is
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Figure 62 — A line source nesr a wall.

A Source

wall

first assumed to be the same as it would be in unbounded fluid, the velocity has a component
normal to the wall. Up~n this flow let there be suporposed the flow that would be associated
in an infinite mass of fluid with an equal and parallel line source located on the opposite side
of the wall, at a distance A from it and on the perpendicular from the Eiven source to the wall
produced. Then at the wall the norma! components of these two flows will cancel and the
boundary condition will thus be satisfied. These two partial flows are assumed to exist only
on the side of the wall on which the original source lies. The imaginary second source is
called an image of the first in the plane of the wall.

Let the z-axis be drawn through the source and its image, being thus perpendicuiar to
the wall, and the y-axis along the wall. Then, from Section 40, the complex potentisl is as
given above and the resultant potential ¢ and streamfunction Y are

=-=Aln(rry), ¥=-4(, +6,) (43b,c]

the significance of F13 35 01, 0, is exhibited in Figure 62. If it is desired to balance the equa-
tions dimensionally, ry t, can be replaced by r, r2/a2 in ¢, thereby merely adding a constant to
all values of ¢. The volume of fluid emitted by unit length of the line source per second is
2r4.

Some of the streamlines atre shown in Figure 63, above the z-axis only, relative to which
the flow is symmetrical. The source is at S. The streamlines are arcs of rectangular hyperbolas

with centers ai the origin 0, given by
)
z? + 22y cot,-:i-—y2 = A2 (43d)

as is easily verified by writing out tan (64 +6,). The equipotential curves are Bernoullian
lemniscates,

Since z =z + ¢y

2 2442
P Y L Y S e 1
dz 122 - 22| (22-y2-A2)" + 42292
whence
q=2_4_f [436]
"




whoro

R X CEY VRRSLR ot = (z+h)? + y?

v
Thus at infinity ¢ -~ 24/r, as in the flow due to a single source of double strength at 0. On the
wall z =0, r = |y| and ¢ = 24 |yl/(A* + y?); 0 is a stagnation point.

The components of velocity are, from Equation [43b],

‘=4 (cos 0, . cos 03) Y= A(sin 6, N sin 02) (436,

A "‘ f2 f‘ r‘2

The net force per unit longth on the wall due to the Bernoulli term in the pressure is

(]

e 2,2 2
- 1 2 1 44 Yy ﬂpA
F '59 j q dy“‘é'P sl (52 I~y2)2 dy = A {43h]

- 00 -—

The source can be said to attract the wall.

[For notation and mothod; see Section 34; Refersnce 2, Sections 8.31, 8.41; also
Reference 5]

44. ROW OF EQUAL SOURCES OR VORTICES; SOURCE MIDWAY BETWEEN WALLS
OR ON ONE WALL; CONTRACTED CHANNEL

€ =~ Aln sinh 2, a and 4 real, [44a)
a
2 2
é=-L4n (cosh 2% cos -’-T—!{) [44Db]
2 a a
¢ = - A tan™! (tan ™Y/ tanh ﬁ) [44c)
a a

from hyperbolic formulas in Section 32 and In (re’®) =in r+7 0. In ¢ a constant tem is dropped.

In ¢, tan~! is to be interpreted so as to vary continuously with 2 and y. Then tan™!
and y vary in the same sense if r 15 held fixed at a positive value, whereas they vary in op-
posite directions if z is kept negstive. While z remains positive, tan™! may be assumed to
vanish with y; then, continuity being assumed, either tan™! and » y/a are both positive angles
in the first quadrans, or they are both negative angles in the fourth. The effect of letting
become negative is easily seen if tan( 7 y/2) is kept finite and not zero. For example, let both
tan~! and 7y/2 be positive and in the first quadrant, with z = , > 0. Thes, if z is decreased

-z, without change in y, tan”! increases to 7 ~ tan~! [tan (zy/a) /tanh (wz,/a)}; whereas,
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Figure 63 — Streamlines due to a line source
S near a wail.

if 7 y/a and tan™! are both negative and in the fcuith quadrant, tan™! decreases with decreas-

ing z o - 7 + tan™1 [tan (v y/a)/tanh (v 2, /@)l at 2= - 2,.

Hence,
4 2 24 2:
v =22 sink -l:f, v =22 sin i {44d,0]
al! a al a
242 Qnx 2n Qnx 2
2 TAT (osn2T2 ._1.’) L.
q 211 ( 4 + COS B H h - cos . {44f,g]

The expressions for ¢, u,v, anrd ¢ are periodic in the y direction with a period equal to
a. The y-axis and the lines y =0, * /2, ¥ q,%3/24a,%2a....... all represent planes of
flow symmetry.

The flow is that due to equal line sources spaced a distance a apart along the y-axis;
at each of the points (0,0), (0, £ a), (0, * 24), etc., there occurs a line source emitting a volume
27 A per second per unit length. For, as the origin, for example, is encircled positively, tan~!
increases by 2= and ¢ decreases by 27 4. If A <0, line sinks occur at these points. See
Section 40 and Figure 64a.

In the corresponding conjugate flow, with potential ¢”= ¢ and stream function ¢ “=-¢,
the sources are replaced by line vortices wiin circulation I' = 27 /1 about each. The veiocity
components are u’=-v, v'=u. At large distances from the row of vortices u’=0, viea.da =
"¢, since sinh {27 z'q) "cosh (2rz'¢) » 2 1. Sce Figure 64b. Thus, if o large width 4 of the
plane containing the vortices is encircled by a path, the circulation about this path is

2h1"2a = Al"a, in agreement with the fact that A’a vortices are encircled. The substitution
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Figure 65 — Flow net due to a line source between walls, or forming one member of a
row of sources; the source mentioned is at th2 origin.
See Seciion 44. (Copied from Reference 253.)

cin ga/2 for sinh n2/a rotates everything through 50 deg, with the sources or vortices on the
2-axis.

A number of interesting physical cases can be constructed by the suitable insertion of
walls.

(A) Line Source Between Parallel Walls

According to Equation [44c], ¢ is constant along each of the lines y = t g/2. (Note
that tan 90 deg = £ o, tan 270 deg = £ «.) Rigid walls may be inserted along these lines, and
the formuias then represent flow due to a line source midway between two walls separated by
a distance a. The flow net is shown in Figure 65. As indicated on the figure, a consistent
set of values of y, which is many-valued, is as follows: & = 0 on the positive z-axis;
¢ = - m A/2 along the positive y-axis to y = a/2 and then in both directions along the wall
that lies at y = @/2; ¢ = - » 4 on the negative z-axis; ¢ = - 3 7 A/2 on the negative y-axis
and along the other wall at y = - a/2; & » - 274 just below the z-axis.

Asz+tew, v+ 0, u-(7Ad/a) tanh (2r2/a) » £x A/a. Thus the flow becomes uniform,
and the total rate of outflow from the source is 2(a |u]) = 2r4, as found before. In general, on
the z-axis v = 0 and




. e f
uzﬁl_ smh(2rr~5)\ « 74 oot 72
a cosh(2n.'3’.)—1 a a

a

On the y-axis u = 0 and

v="4 cot ¥
a a

On the walls at y =+ /2, v =0 and

u="4 tanh 1€
a a

(B) Line Source in a Stream Botween Parallel Walls

[44h]

[44i)

(44i]

If a uniform flow parallel to the walls is superposed, the resulting formulas can be written,

in terms of real constants U and a real positive constant ¢

¢=U 2+ 3. ﬁ-—lln(coshm—cos@)]
2rla 2 a a

Y= U{y+—g-[f-g ~ tan™! (tanfz/tanh E)]}
2l a a a

g 77 . 2nz gU . 2ny
U=U[-1+-2—;'\—}17 smh—;——l)], 1):‘7 sin —

(44k}

[441)

[44m,n]

The uniform velocity that is here superposed is U (1 +¢/2a), but the resultant stream velocity
at z=+o is U, since, as a2+ o0, us—=U. A8 &+-c0, us—-U (1 + g/a). On the walls at y=%¢/2,

-

U= U[—1+—Z(tanh"—z-1)
2a c

On the 2-axis

and a stagnation line cecurs at z = 20 where

a
2, = — tanh™} _g._
Q a 2a+g
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With a suitablo dofinition of tan™!, ¢ = 0 occurs on the 2-axis and also on the dividing
surface $ defined by

y 2
(1 + g__a) . tan~! (Lan 2/ tann = ) [44x]
g/ a a a
This surfac passes through the point (z,, 0), and toward z = - ~ its sides become parallel ard

a distance L apart where L represents twice the limiting numerical value of y or

©

L= 21— [44s)

—_— Figure 66 — Flow past a semi-infinite cylinder

- S ~——— butween walls a apart, or along a channel
\"’*\\*__ narrowed in a certain manner. Constructed
T ~OV with use of a line source at 0.
See Section 44.

Here, for continuity, tan™1[- tan (sL/2a)] is interpreted as 7 — # L/2a. On the walls, ¢ = a /2
at y = a/2,and ¢ = - all/2 at y = - a/2,

A semi-infinite cylinder can be inserted along S, an the flow is then represented
between the walls and past this cylinder. The fluid approaches from z = + « at velocity U
2nd leaves, at z = - =, at velocity U’ = U (1 + ¢g/a) = aU/(a-L).

Streamlines for g/a = 1 are shown in Figure 66, for y¥ > 0 only, since the z-axis repre-
sents a plane of symrelry. On the cylinder, ¢ = U at P, where z = 0.087a. Other possible
forms of the cylinder, for /2 = 1/2 and ¢g/a = 3, are shown by broken curves.

A wall could also be inserted along the positive z-axis up to g and then along 5,
forming, with a wall at ¥ = ¢/2, a channel narrowed in a certain n:anner,

If the sign of U is changed, all velocities are reversed without change in the geometri-
cal flow net or the pressure. The diagram can be most easily reversed from lett to right by
revarsing the positive direction for z.

(C) Line Source in One Wall or Corner of a Channel

In Case A, an additional wall can be inserted along the y-axis. I is then convenient
to take ¢ = - 7 4/2 for y > 0 and ¢ = 7 A/2 for y < 0, so that ¢ is conlinuous on the positive
z-axis. The formulas of Case A, and the right-hand half of Figure 65, will then represent the
flow in n semi-infinite channel with plane walls a apart, due to u line source aiong the middle
of its base. See Figure 67a. The source may represent approximately fluid entering or leav-
ing through o narrow slit; a volume .1 passes through the slit per second, between any two
planes of flow unit distarce apart.
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Figure 67 — Line sourceon a rectilinear toundary or in a corner.
See Section 44 (C).

Or, alternatively, walls may be inserted along y = 0 and y = a/2 only. Then the line
source, of the same strength, lies or a side extending to infinity in both directions, as in
Figure 67b, and the strewmlines - re illustrated by the upper half of Figure 65.

Finally, walls may be inserted again along y=0and y = a/2, and also along y = 0.
Then the formulas and one quarter of Figure 65 represent the flow due to a source or sink in
one corner of a rectangular channel of width a/2, as in igure 67c. The source emits 7A4/2

units of voluiae into the channel per unit time, between planes of flow unit distance apart.

(D) Channel with a Smoath Contraction

The nathematical formulas can be extended upward to y = a without passing any singu-

larity. The diagram between y = 0 and y = a is then symmetric with respect to the line y = a/2.

Let a uniform stream be superposed, as in Case B, and let curved infirite walls be inserted
along any two streamlines lying between y = 0 and y = a. Then the diagram between these
lines represents flow along a two-dimensional channel whose cross-section changes smoothly
at » certain place along its length. See Kigure 68, where any two curves may represent the
walls.

Equations [44k] to [44p] arr applicable. Assume ¢ = and tan™! [(tan #y/a) /tanh
(7 2/d)i = 0 on the a-axis. Then, for continuity, *an™! passes from the first quadrant into the
second as y increases past y = a/2, provided z > C. but, if z < 0, these two quadrants are
interchanged. Thus, as 2 - + -« #nd tanh (» z/a) ~ 1, tan™! ((tan (z y/a)/ tanh (na/a)] +» » y/q;
whereas, as 2+ ~ w0, tan™! » 7 - (7 y/a). Hence

88 - + 00, o » Uy;
A

g9 g
asS T+ = oo, U[(l+;)!/-72-]

Thus, if &, and ¢, are the values of « on the curved walls, their distance apart, given by the
difference in y, is

L = a lll-'l,ll _ _lb-lll
1 ﬂ——%—‘atz--w, L2——2-U—lat,z=+oo
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Figure 68 — Streamlines in a channel narrowed 10° a4’
in a certain manner, as constructed (a) (b)

with use a line sources. Figure 69 — Line source on a rectilinear
See Section 44(D). beundary. See Section 44(E).
The ratio of contraction or L /L, is in all cases a/{a+9).
If the z-axis is drawn along the central line of symmetry or y = a/2, then in [44k],
[441], and [44m,n] tan™! is replaced by cot™}, tan by cot, sin by - sin, and cos by - cos.
If infinite planc walls are inserted along y = 0 and y =g, they form a straight channel
with a source in each wall.

(E) Source Anywhere on Wall of a Rectanguiar Vessal

More general cases can be constructed by combining two flows of the type dascribed
in this section. Two examples may be noted.

To represent zpproximately flow into c- out of a small slit at £ in the side of a rectan-
gular two-dimensional vsssai ABCD, as sketched in Figure 69a, flows may be superposed due
to two equal rows of zources or sinks perpendicular to the side AA“ of an infinite channel, with
sources or sinks at £ zad £ on this side, and a partition may then be ingerted along the
plane of symmetry BC.

To represent approximateiy flow through a small slit located in the bottom of a rectan-
gular vessel ABCD but displaced a distance ¢ from the canter, combine two rows of equal
sources, with the sources 2a apart in each row but the rows differing in position by a - 2b,
where ¢ is the width of the vessel, and insert partitions along two consecutive planes of
symmetry, such as AB and CD in Figure 69b.

In both cases, of course, only the flow inside the vessel is represented. (For notation
and method; see Secticn 34; Reference 2, Article 10.4, 10.5; Jaffe (30); Cisotti (31).
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45. ALTERNATING YORTICES GR SOURCES; VORTEX MIDWAY
BETWEEN WALLS

w =L In tanh 72 , a and I" real 45a]
n 2a
T ny
. z I cosh —— *+ COS—
é =--L tan™1 [sin 2 /int ’-’-], ¢ =-—In a a [45b,c)
2 ¢ @ " cosh _’E ~cos ™Y
G a
u=~—L_ cosh IZ sinﬂ, v =—L sinh 22 cos Z¥ {45d,e]
2aC a a 2a3 a a
-z
q =§%, @ = sinh? ia- + sinzl; {456, g]
For the interpretation of ten~!, see Section 44.
. . ne
On the z-axis v =0, Ve l"/(za sinh -——) [45n]
a
. .Y .
On the y-axis,v =0, v=-~I/ (2a sin —) (45i]
a
z
On the lines y=%a/2, v=0, u=%1/ (2(1 cosh -ﬂ—) [455]
a

The tan™! is to be defined so as to vary continuously with z and y; let one of its values cn the
positive z-axis be zero.

There is virculacion I'" around the origin, since tan™! increases by 27 and ¢ decreases
by I' as the origin is encircled. Iurthermore, if y is increased by a, ali functions merely
chunge sign; hence there is circulation - I" about (0,2). Finally, everything repeats vwhen y
is changed Ly 2a. Thus the formulas represent the flow due to a row of vortices spaced a
apart along the y-axis, all of equal strength but alternating in direction of rotation. Part of
the flow net is shown in Figure 70.

"The conjugate flow with ¢’ =, ¢”= - ¢ represents a vrow of alternate sources and
sinks of equal strength, spaced a apart along the y-axis.

Parallel plane walls may be inserted along the lines y = ¢/2, on which ¢ =0. Stream-
lines for this case are shown by the central section of Figure 70.

The substitution of tan(nz/2a)for tanh (72/2a) rotates everything through 90 degrees,
with the sources or vortices on the z-axis. (For notation and method; see Section 34; Jaffé30,
Reference 32.)
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Figure 70 — Flow net due to a row of vortices i oy

or sources of alternating sign, or due «* »
vortex between walls a apart. i

(Copied from Reference 253.) J. —f
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46. ROW OF EQUAL LINE DIPOLES ON A TRANSYZRSE AXIS; DIPOLE

MIDWAY BETWEEN WALLS, WITH PARALLEL AXIS; FLOW PAST
CYLINDER BETWEEN WALLS OR THROUGH A GRATING

73
% =B cot, — — @ and B real; [464]
B ¢ B .. 2ny
¢ === sinh ~—, ¢ =~= sin ~=~ {46b,c]
H ¢
u ag’ﬁ (cosh ..2.1"5 cos ?ﬂ'.'/.. 1) V= 2nB sinh -2-”—'? sin E’Z {46d,e]
aH? a a aH? a a ’
2
H=2 [sinh2 ZZ 4 sin2 n_y] = cosh 2z _ cos 2y (46f]
a a a a

All functions are periodic in the y direction with a petiod @. The lines y=0,*a/2,%q,....

represent, planes of flow symmetry; the y-uxis represents a plane of geometrical symmetry.
At each of the points (0,0), (0 £ @), (0 £24) . ... on the y-axis there occurs a line
dipole with line-dipole moment equal to aB/r and with its axis directed toward positive
(if 8 > 0). For, near the origin, for example, « = B cosh (r2/.)/sinh (r2/a) » aB/nz by use
of the series [33f,g]; this represents a dipole, as in Section 37; see Figure 71.
In the conjugate flow the axes of the dipoles are directod along the y-axis; this is the

fiow of Section 47 rotated through 90 degrees.
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(1) Dipole Between Walls

On the lines y =% /2, ¢ = 0. Walls may be insested along these lines, which are
drawn broken in Figure 71. Then the flow is represented due to a dipole placed midway
between parallel walls separated by a distance q; the axis of the dipole is parallel to the walls.

2B 2 -1
On the walls at y = ¥ a/2, v =0, PR (c i )
a

osh ~—+ 1 [46g)
a

2nB 2 -1

On the z-axis, v =0, u= = (cosh ik 1) [46h]
a a

. 2nB Ory \ "t

On the y-axiS, » =0, u == —— (1 - coS ﬂ) [46i)
a a

(2) Dipole in a Stream Between Walls

If a uniform stream at velocity U toward negative 2 is superposed, terms Uz, Uz, Uy
are added in w, ¢, ¥, respectively, and a term — U in v. Assume that B/U > 0. Then ¢ =0,

not only on the z-axis or median plane between the walls, but also on #n oval cylindrical
surface § whose equation is

B 2 z
Uy =— sin il / (sinh2 2+ sin? 13—’) (46]]
2 a a a

See Figure 72. The semidiameters of §, r,, and r,, in the 2 and y directions, are given by

ntr B B ar,
simh -;1 = ‘/ a2 =?}-‘cot ;2 [46k,1]
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Figure 72 — Nearly circular cylinder between
walls, obtained with use of dipoles in
a stream. See Section 46.
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To obtain the first of these equations, divide (46j) through by y, then let y + 0, noting that sin

(2my/a)/y » 2n/a, and solve for z = r,. The second equation has a root 0 < r, < a/2 for any
B/U > 0.

A cylinder may be inserted along the surface S. Then, if walls are also inserted along

the lines y = * a/2, the formulas, modified as steted, represent a stream that flows between the
walls and past this cylinder.

Equation [46k] may be solved for r, by asing the seric 5 [331] for sinh™1:

r_l. =y (lg) 1/2 .l (,B) 3/2-}- 3 (”8\5!2
a al 8 \al 40 aU}

or

2 4 7
_ 1 [ 3 (nfy _ aB
'1“'0[1"3‘ (—a—) +:1_0(_.a_)......],r0-‘/-;-[7 [46m,n]

To obtain a similar series for 7., 8ssume that

4
mf.\2 ne
0 0
r, =¢p ‘-1+c —_) +e, =) ...

writo [461] in the form
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2 1B T T
a2 a a
use serios [33e] for cot, substitute for r, in terms of ro> and determine ¢, ¢, . . . . . by equa-
ting cocfficients of like powers. The result is
. [1 1 (rrro)2+ 11 (ﬂfo 4 ] [460]
=r|l-2 (2] +={—] ..... o
20 8 \a/ 360 \a

Thus, when aB/rU is small, so that nry/a is small, so that nry/a is small, r, and r,
egree to the second order, and § closely approximates a circle. lts radius becomes r as
@B/U + 0. Even if r, = a/4, r, exceeds r, by less than 2 percent, although both are about
10 percent smaller than Tor

The kinetic energy of the fluid, when the cylinder moves at velocity U in translation
parallel to the walls while the fluid at infinity is at rest, is easily found from Equation {76a]
in Section 78. For such motion the complex potential, obtained by dropping agsain the term
Uz, is was given by [46a]. Let the path of integration be displaced outward from the contour
of the cylinder until it becomes a long rectangle with sides lying along the walls and ends at
z=2%1 Then on the walls dz = dz and  =0; hence the walls contribute nothing to (/*) dwda.
On the ends, dz = { dy and ¢ » B sinh (2nl/a)/[cosh Pni/7) + I:j = % B tanh (nl/a) » £ B as
! » e, so that the ends contribute

a/2
2B f dy = 2aB

-~a/2

Thus the kinetic energy of the fluid, per unit length of the cylinder, is, from [76a],
T, =% p U (2aB-US) = .;. p U? (2%2 - s) [46p)

where S is the cross-sectional area of the cylinder. If r,/ais small, the radius of the cylinder
can be taken to be, from [46m,c], r=r, [1 - (nrrO/a)2 /8], so that 7, = r [1 + (wr/ @)? /6], approxi-
mately; and S = 772, Then (see Taylor33)

’ 2
T, =L, 7202 [1 +% (—ZL) e ] [46q]

(8) Floew Tkrough a Grating. When the stream is present, a similar surface
S surrounds each of the points (0, 0), (0, £ @), (0, £2a) ... . On the surface surround-
ing (0,a), for example, ¥ = aU, and the equation of the surface can be written
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U Figure 74 — Row of equal line dipoles

with longitudinal axes.

Figure 73 — Streamlines between two nearly
circular cylinders, mounted in walls or
forming two members of an infinite
grating. See Ssciion 46.

2n(y-a)

5 {46r]

U(y-a) =L sin
(y-9) ==
Thus, if no walls are inserted, the formulas represent u stream flowing at normal incidence
through a grating whose bars are represented by the surfaces S. The bars are nearly circular
in section provided their diameters are smaller than the intervening spaces. Some streamlines
for this case are shown in Figure 73. Ve

(For notation and method; see Section 34; Reference 1, Article 64.)

47. ROW OF EQUAL LINE DIPOLES ON A LONGITUDINAL AXi3;
FLOW PAST A GRATING

2
=8 cot% , a and B real [47a]
. 2n2 . 2ny .
é =,—I[’: sin - 0/ =:% sinh - [47b,c]
RN A 2ny Znz
H =% |sin®* —+ sjnh* — | = cosh — -~ cos — 147d)
a a a a

+12




. 2 2 2nB ;
= 2nB (1 - ¢co8 _mf cosh —"—ﬁ' V= ""1"' sin-zlz ginh 2_g
a a atl? a a

[479,‘]

All functions are periodic in the direction of = with the period @, and the z-axis represents a

plane of flow symmetry. The lines 2=0,% a/2,%gq,........represent planes of purely
geometrical symmetry.

Near the origin, as in Section 46, « reduces to aB/rz, so that there is a dipole at the
crigin with line-dipole monient equal to aB/r, and with its axis directed toward positive z if
B >0, toward negative 2 if B < 0. Similar line dipolos occurat y =0 and z=%qa, £2a.....
Hence the formulas represent the flow due a row of such dipoles spaced a apart along the
z-axis; see Figure 74.

2nB 2nz\ 1
On the z-axis, v=0, u = 1 - cos —”—z) [47g]}
a \ a
On the lines 2 =0, ¥ g, £ 2¢, otc., v =0,
“zR 2 \ -1
= oosn 2T _ 1) (47h]
2 \ a

In the conjugate flow the dipole axes are directed parallel to the y-axis; thi: is the
flow of Section 46 rotated through 90 degrees.

Flow Fast a Grating
i a uniform flow at velocity U toward negative @ is superposed, a term —U is added
in u, Uz in u, and Uz in ¢, and the formula for ¢ becomes

D
o= Uy -8B ginh Z¥ o 147
H a

Assume that B/U is pcsitive, so that the dipole axes sro oppositely directed to the stream.
Then = 0 on the z-axis and on a dividing surface §, symmatrical with recpect to both axes,
given by

B . 2 2 Snz
¥ =~ sinh it / (cosh =y cos -—”—) [47j)
U a a a
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If #B8/aU > 1, S consists of two undulating surfaces enclosing.the plane y = 0. This

appoars from Equation [47k], which cannot be solved for ry if #B/al > 1, so that § cannot cut
the z-axis.

If #B/al < 1, S breaks up into a set of similar cylindrical surfaces with axes at

z=0,%taq %2a..... ‘The semidiameters of each cylinder in the z and y directions, found as
in Section 48, are r, and r, where

B _ B uf,
sin ”—;J I =g °°“‘-a—2 [47k,1]

Stagnation lines occur on the ‘Cylthders where y = 0.

‘The formulas will then roprdsont streaming flow past a grating whose bars have the
contours of the cylinders. If the diameter of the bars is smaller than the spacing between
them, they are nearly circular in section, the y-diameter exceeding the z-diameter by less than
2 percent. Streamlines for such a case are shown in ¥igure 75; onlv half of the symmetrical
diagram is illustrated. If the diameter is small, r; =1, = (aB/aU)% , nearly.

(Fer notation and method, see Section 34.)

48. ALTERNATING LINE DIPOLES; DIPOLE MIDWAY BETWEEN
WALLS, WiTH PERPENDICULAR AXIS

3 .
%=1 B/(sin ) ”~) (48a]
a
B z B z
$ =— osh = sin my » ¥ =— sinh  cos Y [48b,c]
G a a =~ @G a a
LS A 2r2 2ny
G = sinh® — + gin? — =2 | cosh — - cos —~ [48d]
a a 2 a a
B
u= i’-—i(coshz LA cos? 171) sinh 2 sin ki {486)
a@@ a g a a
aB (/. ,nT . ,ny p e ny (48]
v=-;é-§ sinh ?—sm —aa- cos 2— cos—;-

Near (0,0), « » ia B/n2, representing a line dipc.e of moment aB/r at the origin with
its axis toward positive y (if B > 0). See Section 46. The entire field represents a row of such
dipoles spaced a apart along the y-axis and with their axes directed alternately toward positive
and toward negative y.

‘n the conjugate flow the dipoie axes are paratlel to the z-axis.
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Figure 75 — Streamlines past a grating of
nearly circular cylinders; sece Section 47.
(Copied from Reference 253.) -
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Figure 76 — Row of line dipoles with axes
longitudinal but alternating in direction.

On the lines y = % a/2, ¢ = 0. Hence parallel plane walls may bo inserted along these
lines. Then the flow is represented due to a dipole placed midway between walls ¢ apart, with

its axis perpendicular to the walls; see Figure 76.

. B n
On the z-exis, u =0, v = - = coth — csch ki [48g]
a a a
aB nT ne
On the walls at y = £ ¢/2, u = * — tanh — sech — [48h]
a a a
B
Ois the y-axis, v = 22 cotZZ csc = [48i]
a a a

(For notation and method, see Section 34.)

49. LINE SOURCE, VORTEX OR DIPOLE ANYWHERE |
BETWEEN PARALLEL WALLS

If the line singularity between walls, as considerec in Sections 44, 45, 46, and 48, is
at a distance b from the median plane between the walls, the complex potential is modified as
follows:

Line source:

‘ —ib 5
w=-~4 [ln sinh (%) + In sinh M] {49a)
2a 2a

Line vortax:

—< —~ In sinh
2a 2a

n(z—1b) ] ﬂ(z+z'b—ia)]

i
0w=— [ln sinh {49b]
o
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Line dipole with axis parallel to walls:

¢ —ib .
W= — [coth lgz__z_) + coth M] [49¢]
) 2a 2a

Line dipole perpendicular to walls:

0 i o
0oL [cou, n(z=ib) Z(ii’_”_‘“_):l
2 2a 2a

(49d]
The walls are assumed to be at y = £ ¢/2 as before, where a/2 > |b|. If no walls are present,
there are two rows of singularities displaced a distance 25 relatively to each other, the spac-
ing in each row being 2a. A, I, and C are real; the volume emitted psr unit length from the
source is 274, the circulation around the vortex is I, the line-dipole moment is aC/xr.
Expressions for ¢, ¢, u, and v are easily constructed by substituting firgt y — 5, then
y + b - a, for y, and 2a for @, in formulas given in Sections 44, 45, 46, or 48, and  combining
the wo terms thus obtained. For the line vortex the formulas for the conjugate flow of Sec-
tion 44, not those of Section 45, are to be used, with 4 = I'/2s; the corresponding complex
potential is w = ¢4ln sinh (r2/a). Similarly, for the fourth case, the conjugate flow of Sec-
tion 48 reversed in sign is to be used, with a complex potential B coth (xz/2); B is to be
replaced by C/2. (Reference: Jaffe’30, Caldonazzo32).

50. TWO LINE DIPOLES IN OPPOSITION;
DIPOLE AND A WALL

eia e-—i(!
w=p - , p and ¢ real and ¢ > 0, [50a]
z2-¢c z+c

cos (6, -a) cos (6, +a) /8in (6 —«) sin (6, +a)
¢=#( , - - ), =—p - ) [50b,cl]

1 7

2 f,

1 !

where the significance of r, 5, 6, @, is adequately shown in Figure 77.
y

Figuro 77 — A line dipole at (¢,0) and
its image in a wall along the y-axis.
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From Soction 37 it is seen that these formulas represent a line dipole of moment p,
located at (c,0) and having its axis directed at an angle o with the positive z-axis, together
with another of equal moment located at (~¢,0) and having its axis inclined at a clockwiss
angle o from the negative z-axis. To obtain the second term as here written from {57r], re-
place & by r~-aand note that ¢ = ~1.

The particle velocity is easily found by adding vectorially the velocities due to che
two dipoles.

Along the y-axis, where @, =7 - 6, and r, =1,, ¢y = 0. Hence a rigid wall may be in-
serted along the y-axis; then either half of the ficld represents the flow due to ¢ line dipole
in tho presence of a parallel rigid plane boundary. The other dipole may be regarded as an
image of the first in the wall.

(For notation and method; see Section 34; Reference 2, Section 8.42.)

51. LINE SOURCE AND CYLINDRICAL BARRIER

The problem of a uniform line source parallel to a cylindrical barrier of circular cross-
section is easily soluble by the method of images.

Let the source be at P, distant 4 from the axis of the cylinder, whose radius is a; see
Figure 78. Add, outside the cylinder, the flow that would be due to an equal and parallel line
source on the inverse line @ in the cylinder, which lies in the plane coutaining the axis of the
cylinder but at a distance &, = a?/k, from the axis. Add also the flow due to & line sink of
equal strength located on the axis 0 itself.

Figure 78 —~ A line source at P
outside a circular cylinder.

The resultant stream function is from Equation [40c] in Section 40,
Y (z,y)=~A4 (0, +6,~0) [51a)

where 4 is a real constant and 6,, 0,, 0 are variable angles defined as shown in Figure 78.
At any point S on the cylinder the triangies 0SQ and OSP are similar; hence angle 0SQ equals
angle OPS or n~0,, whence 0, = § + » ~ 6;. Thus at points on the cylinder 8, + 0, ~ 0 ==
and ¢ = ~Ar and is constant. The 3treamline for ¢y = —~ An thus proceeds from P to the nearest
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point on the cylinder, divides, passes around it, and then continues along the extension of
PO. The extension of OP to the right of P is the streamline for ¢ = 0.
The velocity potential is, from Equation [40b],

112
¢ = -4 log (—r—) , {51b]
or, in a dironsionally balanced form,
£y 7o -
¢ =~4log (-—-—) (51c]
ar

where r, rp» 8nd r are distances as shown in Figure 78. The complex potential, with the
origin on the axis of the cylinder and the source at (4,,0), is

w=-4 [log (2 - Ay) + log (3 - A,) ~ log a] [51d]

The components of velocity may be written down from Equations [40e,f].
On the cylinder, taking ds = a d 6,

since

r2=a? 4 h2 —9ah, cos 6, r} =a?+h,? ~2ah, cos 0,

or, using the similar triangles ageain to show that r, r, = a/i,,

Ay
g =24 — sin 0. [51e]
1} rz
< 1

Half of the flow net, which is symmetrical with respect to the CP axis, is shown for
A, = 2a in Figure 79. The source is ai P.
The total force zor unit length on the cylinder is

2mpa?4?
Ay (/‘cl2 - a?)

Fa= (51f)

4
and is directed toward the source. This resuit is easily obtained from tho Blasius theorem
and the residues at 2 = 0 and 2 = A,; compare Section 42.
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Figure 79 — Streamlines from a line source at P near a circular cylinder.

The equations will represent also the flow ins’de a cylindrical shell of radius a due
to a line sink along the axis and a parallel line source of equal strength distant 4, from the
axis; then in the formulas the constant &, stands for a?/k,,

If 4 is made negative, sources become sinks and vice versa, and all velocities are
reversed. (See Reference 1, Article 64; Refevence 2, Sections 8.61, 8.62.)

52. LINE DIPOLE AND CYLINDRICAL BARRIER

Near a circula+ cylinder let there exist both a parallel line source aud e line sink of
equal strength. Thon, upon superposing the flows as described in Section 51, it is noted
that the images at the origin cancel each other and there remain only the image source and
sink at the inverse points. By imagining the external source and sink to coalesce while
suitably increasing in strength, so as to form a dipole, the conclusion is reached that the
image of a line dipole in a circular cylinder with parallel axis is a dipole located on the in-
verse line with respuct to the cylinder.

Let the given dipole he at a distance b1 from the axis of the cylinder, whose radius is
a, and let its axis make an angle o with the line drawn from the axis of the cylinder through

the position of the dipole, as in Figure 80. Then, using [37r] for the potential duv to a iine
dipole,
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Figure 80 — Image of a line dipole in a
circular cylinder; see Section 52.

elo a? =i a?
W= ‘1 —wwe  wmmsmemes y b2 = =~ 1y [52a,b]
1 bf 2-b, b,

——

\'cos (0, ~a) a? cos (6, +a) sin (6, ~&) a? sin (6, +&)
¢"I‘L_"—_‘"'"_2 "—_—], ="I‘[ ]
"y

r
b1 2

[52¢,d]
" b2 T2 ’

where the significance of s 73, 0, and 0, is as shown in Figure 80. The real constant
is the line-dipole moment of the given dipole. The dipole and its image have axes equally
but oppositely inclined to the line joining their positions.

On the cylinder itself, since 7'2'/r1 =a/b, and r, sin @, = r, sin 6,, expanding the
sines

+—

cos 6, a? cos 02)
2
bx r

¢ = psina <

r

1 2

But, also, on the cylinder

ry cos 6, = (a% -b2 ~r3)/2b,

and
r, cos 6, “on (a2-b§ —rg) -——(b2 - a2 —r})
Y2 1
Hence
ina
o= - £ s; [52e]
1
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The formulas may represent the flow due to a dipole outside of such a cylinder, or, if
b, < a, the flow inside a cylindrical shell of radius n caused by a line dipole inside it. In
either case the subscript 1 refers to the given dipole, and the other dipole may be regarded
; as the image of this one in the cylinder.
The force on the cylinder can bo found, as in Section 42, from the Blasius theorem

and the method of residues. Here

- 3 ——
(2-5))% b2 (2~b,)?

— g

dw ela a2 e~ia ]
dz [

If b, > a, inside the cylinder there is only a singularity at z = b,, and, expanding at 3 = b,,

as In Section 30,

| 1 1 2{z-b,)
- =(b,~b,+2-b)2 = -
(Z-bl) (b2-61)2 (bg"b1)3

If &, < a, the singularity is located at 5, and (3—62)‘2 is expanded; the path of integration
is then traversed in the negative direction, so that ‘¢ (2~ b‘)‘1 dz = - 2nqt. In either case the
force pet unit length on the cylinder is found to be directed toward the dipole and to be of

magnitude

dmpp?a?d N (541

(b2-a?)3
The force is thus ixdependent of the direction of the dipole axis. (See Reference 2, Section
8.81, 8.82.)
53. LINE SOURCE IN UN/FORM STREAM

Upon the flow due to a line source at the origin let there be superposed a uniform flow
at velocity U toward negative z. From Equations [35a] and [40a] the resultant w, ¢, and ¢

may be written
w=U(z~gin3a) {53a]
¢=U(~ginr), ¢=U(y-g6) [53b,c)
re(@? 4yl O =tan™! (y/2),

where ¢ is a real positive constant, |0|§n,/and 0 has the sign of y; sne igure 81. Thus
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Figure 81 — Line soucce at 0 in a

uniform stream; see Section 53.

s g\ i

cus 6 sin 8

U~ U(—l +g — }, v=gU ) (53d,e]
r r

dw g z+iy—-g dw "

[———— —— —————— 3 Rand - -, 2 i

dz U(1 a) v zriy 1 |ds tUlr’ T=(e-gf +y? (83l

where r, is the distance from the stagnation point at (y,0) Note that dr/dz = z/r = cos 4.
The only singularity occurs at the origin; and the z-axis is an axis of flow symmetry.
The value ¢ = 0 occurs on the positive z-axis and also on a curva S defined by

y=g0, or r=géd/sing, [53h,i]

As §-+ 0, y» 0; also §/sin 0 » 1, so that r » g. Hence S passes through (¢,0). Toward
z = -~ oo, |0] -, and |y] increases to a maximum of n g.

Thus the streamline for v = 0 follows the z-axis to the nose of S, where it divides and
continues along both sides of S. Every other streamline undergoes a lateral displacement of
% pg from + « to —~ =, or from = 0 to @ =% 7. All fluid coming from infinity remains outside
of S, and all fluid emitted from the source remains inside S.

An infinite solid cylinder may be inserted ulong S, extending to infinity also toward
negative z, where it has a maximum thickness of 27¢. The formulas then represent flow past
this cylinder. They may also be used to represent the flow due to & line source inside s cy-
lindrical shell having the form of S.

If the motion is steady, the velues ¢ = |U| and p = p_, occur on § where ry=r.2=9/2,
from (53g]. On the z-axis ahead of §, rnz,r, =z ~g, ¢ = |U| (1-g/2), and

2¢9 g¢?
PP -%pU’(—---g-;) (53]
z z
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Tho rot force on the cylinder is parallel to the z-axis, by symmetry; taken positive
toward negative z, it is, per unit of length perpendicular to the flow,

F = [pcoseds

where p is the pressure on the cylinder at any point, ds is an element of distance along §,
and ¢ is the angle between the ncrmal to ds and the z-axis; see Figurs 81. But, also, ds cos
€ = dy whero dy is the elament of y corresponding to ds, Hence

F=(pdy (53k]

Inserting p = - p g%/2, also £ = r? + g% ~ 2gr cos 6, and using [53h,i], the contribution
of the Bernoulli term to the pressure is found to be

4
2 sin O cos 0 cin? )
FB"'"?P‘/UzJ. (1— 2 + 2 - /‘d()
- 0 6
But
J'”sin2 0d0=-5in2 0 ”+2f”sin 6cosqd6=2j‘”sin 8°°f__0d(,
Hence
4
FB=-‘,§ng2J dO = ~ npgl)?
e 2

The same result i3 obtained with p = —p U2/2. Hence the total force on S is the same as if
the pressure in the fluid were uniform throughout.

Half of the symmetric diagram of streamlines outside of § is illustrated in Figure 82.
The excess of pressure p — p_, along tha 2-¢xis and then over S is shown on an arbitrary

scale.
y
Figure 82 — Streamlines past a cylinder S —_— —
of semi-infinite cross-sectior, ¢. ly half of e
which is shown, of width 2a¢ at infinity; % —
also. the distributio of pres-ure along the ¥=7¢ ———

plane of symmetry and over the cylinder.

Const...cted with use of a line source at 0. Plane of Synetry

128

B - .- - - S A i L e gy

s et
e b e ————




Changine the sign of U merely .averses all v:lecities, the sc2:re becoming a gink. S
may be reversed in space by drawing the z-axis in the opposite direc tion. (For notation &nd
rothud; see Section 34; Reference 2, Section 8.21.)

54. LINE SOQURCE AND SINK IN UNIFORM STREAM.

Liet a line source be located at (a,0) and an egua} sink at (~a,0), and superpose uniform
flow at velocity U toward negative z; see Figure 83. From Equations [35a) and [40a)] the re-
sultant potential and stream functions can he written, 1n terms of a real positive constant ¢,

y

A

Figure 83 — Cylinder whose cross-section
S is a Runkine oval, obtained from a line
source at (e,0) and a sink at (~g,0).

% = \ .
i See Section 54.

~
\- h
w=Ulz+gln(z+a)~1In(z2-a)ll [(54a]
ry 2,42
¢=U(z+gln-—-)=ll(z+-g-lnge+—a)-——y-) (54b]
" (z-a)? +y?
2 .
y=Uly~-g(8,-6,)1=0 (y - g'tan”! ___a_y__) [54c)
22 + y? - g
where
rl=@-a)+y?, rl=(z+a)?+y? (54c]

tan 6, = y/(z - a), tan 6, = y/(z + a)

and all angles may be supposed to lie between —7 and  and to have the sign of y. Also

u-U[-1+g(z——-a—=+a)] (54d]
g
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1
vagUy(-l-z -_;), [540]

T N
q? = U? [1 +.j£z_ (a2+ag—z2+y2)] {54f]
g

Singularities occur at z = £ g; and stagnation points @, @, occur where dw/dz = 0 or
4+
z2=mz=%]and

l= \/;2-+ 2 ag [54g)
On the z-axis where & > ¢, r, =z ~ a, r, =2 + g, and ¢ = |u| where
2
u=U (-1 § =4 ) [54h]
22 ~ g2

Thus the streamline for ¢ = 0 follows the = - axis from + « to @, where it is joined by an-
other branch coming from the source; then it divides and preceeds along ths two halves of the
curve S that is defined by

— 2 ot [54i]

22+ y2 ~a? g
From Q,, one branch of this ireamline proceeds to the sink, the other follows the z - axis to
— o, The surface S divides the fluid into that which is coming from infinity and that which is
on its way from the source to the sink.

The curve § is symmetrical about both axes, and is called a Rankine oval. Since an
angle in radians and i’s tangent are nearly squal when the angle is small, the symbol ¢en can
be omitted in [54i] when y is small; then, after canceling y, it becomes clear that the curve
crosses the z ~ axis at the stagnation points. It is broadest in the middle, where z = 0. Its
half-width % can be found by putting ¥ = k and « = 0 in [54i] and solving the resulting quad-
ratic for A; the result can be written

®  tan— (54i]
— n—-
A 2¢g !

On the middle circumference of §, ¢ = |u| and

— (1+ 249 ) [54k)
a? + A2’
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Equations (54g] and [54j] can be written

an 2_9_ g_m(h a\
a"'+a’ hunazg}’

which shows that the shape of the oval as fixed by A/a and l/a depends only on the ratio g/a.
As g¢/a increases, the oval comes to resemble an ellipse and finally approximates a circle;
but for small g/a it is much more flat-sided and resembles the profile of a ship having a
rounded bow and stern.

The formulas may represent the flow past a cylinder whose cross-section has the shape
of the oval. In Figure 83 the oval is drawn for ¢ = a. An example of the streamlines for
g/a = 0.17 is shown in Figure 84. Here l/a = 1.15, A/a = 0.41, 4/l = 0.35. Details of the con-
struction according to the Maxwell-Rankine methcd are shown as described in Section 13; the
parallel lines vepresent streamlines for the uniform flow, whereas the circular arcs diverging
from a represent those for the flow due to the source and sink, all drawn for equal increments
of . In the original figure, however, twice as many lines and curves were drawn, for greater
accuracy. The heavy curve is the cylinder S. Only one quarter of the diagram is shown,
since it is symmetric with respect to both the z- and y-axes. According to the Bernoulli
principle, the pressure excess, p ~ p_, sinks from pU?2/2 at (1,0), to zero at about the point
indicated as P, and then remains negative to the middle, where, from [54f] with z = 0, y = A,
g=lu|=1.29 [U], p - p., = p(U? ~ q2)/2 = ~ 0.33pU%.

y
v
— —~— 1 I T
—_— /’
\[\
N NN [~ L —~—
SN AN <L
SO S 2
N\UANL
A\"Za\ z
0 Plane of Symmetry a !

Figure 84 — One quarter of the streamline plot for a more slender Rankine oval.
Construction of the plot by the saxwell method is shown. See Section 54.
(Copied from Reference 254.)

fAnotaer plov, also containing some of the construction lines and arcs, is shown in
Figure 85. Here g/c = 0.27, L/a ~ 1.24, A/a = 0.57, A/l = 0.48.
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Figure 85 ~ Streamlines past a broader
Rankine oval with construction curves.
At P the pressure equals that at
infinity. See Section 54.
(Copied from Reference 7.)

Useful forms resembling the outlines of ships can be obtained in this manner; see
McEntee3*, and Taylor35,

The formulas may also represent the flow due to a line source and an equal line sink
inside a cylindricel shell having the form of S.

Changing the sign of U merely interchanges source and sink and reverses all velocities.

Kinetic Energy

If the cylinder S is moving through fluid at rest at infinity, the term Uz is missing from
w. Then, at large z,

w=yUln[(1J-g-)/(1—g-)] =gUln (1+-2—(i.. ) =2agU+. ce
2 2 2 2

Hence, in Equation {76c] of Section 76, b, = 2ag U, and, from [76d,f], the energy of the fluid,
for unit thickness perpendicular to the flow, is

T, = Yp(4mag-S) U? (54k]

where S is the cross-sectional area of the cylinder.

(For notation and general explanation; see Section 34; Reference 2, Section 8.30.)

55. YORTEX PAIR IN A UNIFORM STREAM

Tho complex potential for a pair of line vertices with equal and opposite circulations,
located «s {9, %¢) and superposed upon a uniform flow at velocity U toward negative z, is

w=iA[ln(z -ic) - In(z + ic)) + Uz [552)
where 4 is a real constant. The circulation about (0,¢) is " = 2r4, that about (0, ~¢),
[ =-2q4. See Equetions [401] and [355]. Yence *
i
$p=-A(0,~60,)+ Uz, ¢=Aln —+Uy {55b,c)

2
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Figure 86 ~ Vortex pair in a
transverse stream.

- By

¥ -
ry - {zgi—(y-c)z] s Fym {zz+(y+c)2] # 0, = tan~! ye 0, = tan™ yre
X z

See Figura 86. Also

sinol sinBJ
“=-A( - )-—U==2Ac

.fl r

2 2 2
z4+C ~
TICTY (55d)

2,2
2 fl 72

{55e]

fcos @, cos@
ved K 1 2)=4Aca:y
r r

1 r2,2

2 172

On the z-axis, u = - U +24c/(z? + c2); on the y-axis, u = - U + 24¢/¢c? - y2). Hence,
stagnation points occur; they are on the z-axisatz =% g if A/U > ¢/2, or on the y-axis at
y=t Yg if 4/U < ¢/2, where

l/QA V 24
zQ"c ;U"'l’ yQ'Q 1-‘0-0" [55f,g]

If A/U = c/2, there is a single stagnation point at the origin.

The z-axis represents a plane of flow symmetry, the y-axis, a plane of geometrical
symmetry for the flow net.

A dividing surface § always occurs, passing through the stagnation points. If
A/U S ¢/R, it consists of two loops, each surrounding one vortex. If 4/U > ¢/2, it consists
of a single loop surrounding both vortices, defined by the equation,

A N ;
y=7 Zn-r- , or 22+ y2 4+ ¢2 = 2¢y coth (Uy /A). [55h,i)
1
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In this case the streamline for ¢ = 0 follows the z.axis and the curve §. That § passes
through the stagnation points at (izo, 0) can be verified by first replacing coth (Uy/A) by
4/Uy from the first terms of the hyperholic series [33i].

The formulas may represent noncirculatory flow past a cylinder represented by the un-
divided curve §, or flow peay wo cylinders of a certain shape with circulation £ 24 about
them.

The most interesting case is that in which the vortices, when assumed to move with
the fluid, actually stand stili. This is realized when 4,2¢ = U or 4/U = 2¢, so that the ve-
incity at oither vortex due to the other just cancels the stream velocity U. Streamlines for
this case are shown in Figure 86. The large oval curve 1s S; its semidiameters are 2.09¢c
and 1.73c, approximately.

(For notation and method; see Section 34; Reference 1, Article 155; Reference 2,
Section 13.30.)

56. <OTHER COMBINATIONS INVOLVING LINE SOURCES OR DIPOLES

The following cases may be mentioned.

(1) Sources or dipoles only. Streamlines due to three equal and symmetrically placed
line sources, with the fluid at rest at infinity, are shown in Figure 27 of Durand’s Aerody-
namic Theory3, and for two sources and a sink in Figure 28. For a source and a dipole at
the same point, see Reference 36.

(2) Source near a cylinder whose contour is elliptic or of certain other types: M.mis??
and Wrinch37; paraboja-lik«: Sharpe38; a circular arc: Caldonazzo3? and Sestini4?; see

Figure 87 for streamlinoe ia one case with the source at the center of the circular arc.

(3) Source inside a roctangular cylinder: Jaffe3® and Miiler,4!

Figure 87 -~ Line source on axis of &
circular-arc shell. (Copied from
Reference 39.)
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(4) Source or dipole on vertex of an angle (or sharply bent lamina): Agostinelli*?;

(6) Lamina, plane or bent along the median line, with a centered line source on one or
both sides, and immersed in a stresm: Colomho.43 The velocity may be finite at the edges.

For a similar combination including circulation or a vortex, see Section 98.

(8) Sources or sinks in a stream. Boundaries of many other shapes then those described
in Sections 53 and 54 can be obtained by inserting various combinations of sources and sinks
into a uniferm stream. There will always be & dividing surface along which a cylinder may be
introduced., This surface is closed if the total strengths of sources and sinks are equal; oth-
erwisoe it extends to infinity, in the direction of the stream if the sources are in excess, or in
the opposite direction if sinks predominate. Although it is not always possible in this manner
to match oxactly the shape of an arbitzarily given cylinder, sufficiently close matches may

often be secured. Uniforn sheets of sources, as described in the next section, may be
employed.

57. SHEETS OF LINE SOURCES OR YORTICES

Let sources be distributed uniformly over an infinite plane strip of width ¢. Let the
source strength per unit area be a, so that a volume of fluid 2mais emitted per second from
oach unit area of the strip. Draw the zy-plane so that the given strip cuts it perpendicularly
along the segment of the z-axis from z = @ to z = b; thus ¢ = b - 6. The resulting flow will
then be parallel tothe zy-plane.

On the strip, let z be replaced by z*, and consider the sources on a substrip of width
dz’extending from x’to 2"+ dz" see Figure 88. Since the volume of fluid emitted by these
sources is 2radz per second, per unit of length perpendicular to the planes of flow, their

contribuiion to the complex potential is, from [40al, in which now 4 = adz and z is to be re-
placed L: z - 2/,

dw=- aln(z-2") dx’

Figure 88 — A plane sheet bf line sources.
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where 2 = z + iy and refers to a fixed point (z,y). Thus

5

b
W=- ¢I In(z-2")dr’ wq[(z~2") In(z2~2") 4-3:']/

a

W= +iy =%[(2-d)In(2--b)~(3~-a)In(z -a)]
after dropping a constant term. Hence
.
¢ =Wj(z-b)Inry—(z~a)Inr, ~y(8,~60.)], ¢ = —2![(z-a)6a-(:c-b)ob+yln 7] [57a,b]
b

where

%
ro= [(®=-a)2 +9y2]", ry= [(:z:—b)2 +y3] %, 8, = tan™! z—y—l-,, 0, = tan™! <
- z-a

and 6, and @, may be allowed to vary continuously without. restriction. Also

a¢ Ta d¢
u n——é;-.aln-;, v ==y = (0= 0,) (57¢,d]

The conjugate flow is that due to a uniform sheet of line vortices; the vortex strength
or circulation per unit of width of the sheet is 2sa, and the circulation around the eniire sheet
is 2rac; see Section 40.

If*&r is negative, the sources hecome sinks, or the direction of the circulation around
the vortex sheet is reversed.

(For notation and method; see Section 34; Reference 3, p. 81.)

53. SOURCE SHEET IN A UNIFORM STREAM

Let the sheet of sources described in the preceding section be immersed in a uniform
stream flowing at velocity U toward negative z. For simplicity let ¢ = —~ ¢, b = 0, so that the
sheet, of width ¢, extends from z = ~c to z = 0. Adding, from Section 35, & term Uz for the
stream, and replacing a by ¢ U, whete g will be assumed to be positive:

waUlz+glzinz-(z+c¢)In(z +¢)l} [58a]
¢ = Ulz + glalnr= (2 + ¢) Inr, - y(0 - 6;)1} {58b}
r
y=U y+g[zo—(z+c)01—yln—;1]} [58¢c)
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— N —_ y t
& 0y 0 Figure 89 — Cylinder with semi-infinite
i gt E4 cross-section §, obtained from a

l",/ 0 source-sheet in a stream.

—— See 3ection 58.
r rl
uw —1+_(]ln—r- y v=9U(0-9,) {58d,e]
where
%
r=(@iry?)h, s = [@+c)? +y2]", 6=tan™! —Z—, 0, = tan™1 ;Z—-c,

and ¢ and 6, may be assumed to lie betweca —r and r and to have the sign of y; see
Figure 89.
A stagnarion point @ occurs on the z-axis, which represents a plane of symmetry, at

z=zo>0where, to make u= 0, sincer=2,r, =+ c,

1
g = c(el/® -1)7! [58f]

On the positive z-axis, 0 = 6, = 0 and ¢ = 0, also, ¢y = 0 on the dividing surface §

defined by

r
y+g [2(6- 01) -co, —yln -l] =0 f58¢]
r

By expanding all terms in powers of ¥ it can be shown that S crogses the z-axis perpendicu-
larly at Q. Since v has the same sign as y, the surface S, being a stream surface, must be
broadest at & + ~ . At large distances from the origin, 6 - 0, » ¢ sin @/rand In(r /1)~ 0,
also, z » r cos 0. Hence, Equation [58g] becomes, in the limit,

y+g(esinf@cos§-cl)=0

Thus ag z + — o, y remains finite; hence § -+ = and y » cgn. Hence, toward negative z, §
bacomes asymptotic to a cylinder of radius

R=ncq (58h]




The flow is thus represented past a semi-infinite cylinder whose profila in cross sec-
tion is 8. The cylinder has a sharper edgo then that obtained with a line source in Section 53.
Its shape is determined by g, its size by ¢, since increasing ¢ and all coordinates in the same
ratic leaves Equation [58g] satisfied. Tha half width at 2 = ~ ¢/2, or at the middle of the

source shoet, where r=r, and 0 =n - 0,, is
y=h=ncg/2=R/2 [56i]

An example is illustrated in Figure 90, for ¢ = 0.15; R =047 ¢, z = ¢/800, approxi-
mately. The distribution of the excess of pressure above that at infinity, 2 - p_ and of the
velocity ¢, along the cylinder and along the plare of symmetry in front of it, sre shown on
arbitrary scales.

(For notation and method; see Section 34; Reference 3, p. 81.)

59. THE SIMPLER SINGULARITIES AND THEIR TRANSFORMATION

A simple type of singularity is the following. Suppose that at z = ¢ the complex poten-
tial w becomes infinite in such a way that near ¢ it approximates the function B In (3 -0)
where B is a constant; let the difference w — B In (2 - ¢) be a finite regular function of z even
at 2 = ¢. Then, from the formulas in Section 40, it is clear that, if B = 4 where 4, is real,
a line source exists at z = ¢, emitting 27 4, units of volume of fluid per second and per unit
length, whereas if B = A, where 4, is real, a line vortex exists there with circulation 2« 4,
around it; if B = 4, + 44,, both source and vortex occur. Again, if w approximates similarly
ue'Y (2 - ¢), where ; and & are real, then Equation [37r] shows that a line dipole exists at
2 = ¢, with line-dipole moment . and with axis inclined at an angle a to the positive z-axis.

“3
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Pressure :—*;:!\

I
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Figure 90 — Streamlines past the cylinder > o J
shown as § in Figure 89. The inner | Velocily 1

streamlines are those due to the i

. . . . i

source sheet alone inside a cylindrical X
|

i
]
'
shell of contour S. The pressure and e —— .;_\_
the velocity are shown, along the e —— %
=
[
¥

axes and over the cylinder. See
Section 58, ({opied from

Referen 2 7.) __———’4:///____
=
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Tho flow due to the source, vortax or dipole may be regarded as superposed upon a flow that
has no singularity at 2 = c.
If a transformation is now made to the plane of a new variable { = f (2), then any line

source or voriex proserves its naturs and strength on the {-plane, provided it occurs at a cor-

formal point for the transformation at which and near which d {/dz exists and does not vanish.

A dipole also transforms into a dipole, but, in general, with a different moment and axial di-
rection.

For, if y = f(c), so that y is the point on the {-plane ccrresponding to 2 = ¢,

i(3) = 1(c)

2-0

Bin({-y)=Bln{f(z)~f(c)l =Bln(z -¢c)+ Bin

The last term reduces to Bln [df/dz] at 2 = ¢ and hence represents a regular function at and
near this point; and the coefficient of In (¢ ~ y) is the same as that of In (2 — ¢). Thuza
source and vortex are conserved in the transformation.

Similarly,
Liei(’-_.“'eiuo 2-0 1
{~y f(z)-f(c) z2-c
in which
fz)-f(e) df d¢
z2~cC dz dz
as z -» ¢}
or,
#'eicx' pe'e
-y z-c

where y’=rpand'®’= a+ 6, r and v being modulus and amplitude of d{/dz = re‘0, Thus a

dipole transforms into a dipole with its strength increased in the ratio of the modulus, and

its axial irclination to the real axis increased by the amplitude, of the transformation.
(For notation; see Section. 34)

60. LINE SINGULARITY IN AN ANGLE

Consider o transfoermation

=2 z={V0, {60a,b]
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where n is a real number not loys than 1/2. In terms of { = re ‘0,

2w plin g10/n {60c)

Thus the reel axis of ¢, corresponding to @ = 0 or 7, s bent at the crigin into two radii on the
a-plane enclosing an angle #/n, and the space above the real axis of { is transformed into the
space in this angle. The angle is concave if n > 1, convex if 1/2 £ n < 1. Under the ‘rans-
formation, the upper half of the {-plane may be imagined to expand or contract a3 the negacive
half of the real axis rotates 1nto the proper position.

An infinite wall lying along the real axis of { thus becomes an angle formed by two
semi-infinite planes joined at thoir edges. Suppose that there is also a singularity in the flow
on the {-plane, such as a source, vortex or dipole, located at a point which lies above the
z-axis and is represented by { = hneiBn o (A" cos Br, A* sin Bn). Assume that 0 S 3 S /.
This singulaiity will have a line image in the plane wall, located as if behind a mirror or at
¢ =A" ¢~iBn, The effoct of the transformation [80a,b] will then be to transform this singu-
larity into a similar one on the 2-plane, located at 2 = A e‘Bor (A cos 8, A sin 8) inside or
on the angle,

Equations [432], [42a], and [50a]) are readily adapted to the geometry of the present case by
changing 2 to ¢ and meking the proper substitution for ¢ or A, Let all amplitudes 6, except that of
e"iB", be taken in the range 0 < 0 <2 . The complex potentials w5 on the z-plane thus obtained
are, when written in terms of 2,

Source: w =~ A lIn (27~A"eiBR)+ In (27-A"e~B7)].
Vortex: w = ¢4 [In(27-42:85) - I, (27~ meBn)],
Dipoie: 0=y [eia (zn_hneiﬂn)—l _ e—dd(zn_hnc-iﬁg}-l].

According to the results of the last section, the source on the z-plane emits a volume
of fluid equal to 274 per unit Jength, and the circulation around the vortex is still " = 2r4,
as on the {-plane. The transformed dipole momunt, however, is p/(nh"~1), and its axis is
diracted at an angle &~{n-1)8 to the positive z-axis on the z-plane, For,ns z - heB,

(d 3“) = _F gila—n-1)8]
2-leB z—be"ﬂ/d" 3= heP nhn =1z~ e

2"~ Rrei3n 5 _peB

e % 2 e (z" - angiBay"1 e’

If » = %, the “angle’ becomes a semi-infinite plane, as in Section 39. A few of the
streamlines due to a symmetricaily placed vortex near sucha plane are illustrated in Figure
91. In this figure B =, so that on the ¢{-plane the vortex lies on the y-axis and its stream-
lines are circles, like those shown in Figure 61 and suggested briefly in Figure 92. Refer-
ences: Greenhill26, Hamel4, Paul45:46, and fo the vortex, Miyadzu*7; with flow past the
cocner and perhaps finite ¢ at ths edge, Uslenghi*8; with a line source on the edge,
Kucharski4?.

(For notatica and method; see Section 34: Reference 2, Section 8.51.)
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Figure 91 — Strea:mlines due to a line vortex at P, opposite a semi-infinite
rigid plane extending from 0 toward the right.
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= transformation to the z-plare.

CW Figure 92 — The vortex of Figure 91 before

Real

TRANSFCRMATIONS DEFINED INVERSELY

61. ELLIPSES AND HYPERBOLAS
2=ccoshw (61a]

Here ¢ is a real positive constant. Since 2 ==z +iy, w =9 + iy,
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z=ccosh¢cosy, y=csinh¢siny, [61b,c]

d____w_(dz)'l 1 1

dz \dw/ “csinhw c(sinh ¢ cos ¢ + ¢ cosh @ sin )’
9 duw 2 1 . 2 .
g¢ = |~—=| = ——, @ =sinh? ¢ cos? ¢ + cosh? ¢ sin? y, [61d,e)
dz 02(,'
or
G = sinh? ¢ + sin? ¢ = Y(cosh 24—~ cos 2y), [61f)

by the use of hyperbolic formulas listed in Section 32.
By substitution it can readily be verified that the solutions of [61b,c] for ¢and ¢ can

be written
cosh ¢ = E),_l;; {[(z +¢)? + y?] Ay [(z-¢)?+ v?] %}, [61g]
cos ¢=-2}5\{[(z+ c ) *‘!/2,]% - [(x-cP +y?] %} {61h)

Here the positive square root is meant. The sign of ¢ and the value of  must be chosen to
fit [61b,c].

Singular points occur wherever both ¢ = 0 and sin ¢ = 0, so that dw/dz + «, hence at
(¢, 0) and (-¢, 0). Furthermore, two types of multiplicity occur: ¢ is many-valued with a
period of 27; and the same point on the z-plane cotresponds to —¢, ~¢r,, as to ¢, ;.
The latter multiplicity extends to dw/dz, which has opposite signs for -¢,, ~i,, and for &,

20
By elimination cf ¢ or y it is found that
2 2 22 2
T Y ¥ .1 (61i,]]
c? cosh? ¢ ¢2sinh?2 ¢ c2cos2y e?sin?y

Thus the curves ¢ = constant are ellipses, while the curves y = constant are hyperbolas;
both families of curves are confocal, with common foci at (Xe, 0), and, as usual, they cut each
other orthogonally. They are illustrated in Figure 93, also, in more detail, in Figure 129, on

which & may be identified with ¢ and 5 with &». Two of the hyperbolas degenerate into parts of
the z-axis:

Yy=0,z=ccosh¢>e¢; ¢Y=na2==~ccosh¢<-c,

using [61b,c]. Again, on the y-axis, ¢ = #/2 or 31/2 and y = % ¢ sinh ¢. The ellipse for ¢ = ¢
degenerates into the z-axis between X ¢, on which z = ¢ cos ¢.
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Figure 93 — Confocal cllipses and
hyperbolas; the flow new on the
z-plane for z = ¢ cosh (¢ + iy).

In the hydrodynamical applications, the double-valued character of dw,'dz makes it
necessary to insert boundaries so as not only to exclude the singular points but also te pre-
vent the fluid from circulating around just one of them. When this has heen done, a choice
can be made for the va!* s of ¢ and ¢ such that they vary continuously throughout the fluid
and such that their de-ivatives represent a single-valued velocity. The sirgular points can-
not be interpreted as representing a source and a sink, either simpie or compound; mathemat-
ically, they are not poles but branch points.

Flow between Hyperbolic Cylinders

If ¢ is taken as the potential, boundaries may be inserted along any two of the ¢ hy-
perbolas. The formulas then rejresent the flow between two hyperbolic cylinders. Conven-
ient ranges for the variables are:

-0 < <o, (Igllléﬂ

Since dw/dz = - u + iv, from [61a—f)
u= ! (sinh ¢ cos ¢) v 1 cosh ¢ sin [61k,1]
=-— (sinh ¢ , — cosh ¢ sin y. ,

On a boundary defined by ¢ = ¢, from [61c,d] and [61f],

1 i 3/2 —~%
7=- (3"‘2 g+ —q—_—--) {61m]
c¢” sin? ¢

On the y-axis, ¢ = n/2 and ¢ = 1/y/c? + y2. In the plane of the opening ¢ = 0 and the veloc-
ity is from Equations (61d,(,b],
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1 1
q = - = [61 n]
c si
"y Ve? - 22
The volume of fluid t>et flows por second through unit length of the slot is represented by the
increase in iy from one hyperbolic face to the other.

Flow through ¢ slot

1" *ha ¢y linders are allowed to shrink onto the z-axis, the flow becomes that through a
slot of width 2¢ in a plase 3ulid sheet extending to infinity on both sides, as illustrated in
Figure 94a. The volume passing pot second, per unit length of the slot, is then 7. On either
; face of the solid sheet cos ¢ = 1, 2 = * ¢ cosh ¢ and, from [61d,6]

! _ 1 1
! 7 ¢ |sink | B

[810]

22 _ o2

Thus ¢ -+ « at the edges of the slot.
If, for generality, ¢ and  are replaced in all formulas by ¢/k and y/k, all velocities
and the issuing volume are multiplied by £.

Circulatory Flow Around an Elliptic Cylinder or Plane Lamina

For the conjugate flow, with potential ¢ = ¢ and stream function ¢ * = - ¢, an ellip-
tical cylinder may be inserted along one of the ¢ “or ¢ curves, or a plane lamina of width 2¢
along the z-axis between * ¢. The irrotational flow around such a cylinder or lamina 1s then

represented. This is illustrated in Figure 94b, where any one of the curves may represent the

=
e SI(E)
Figure %4a Figure 94b /

Figure 94 — Streamlines for (a) flow through a slot in an infinite plane wall,
(by circulatory flow around a plane lamina.
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cylinder, or the line the lamina, the outer curves then representing streamlines. For this case
it is most convenicnt to keep ¢ > 0, hence ¢ < 0. Then from [61b,c] it is easily verified that,

as ¢ “or ¢ increases continuvously from 0 to 2a, the point (z,%) passes once around the cylinder.

Thus the many-valuedness of ¢ “ implies the existence of circulation around the cylinder of
magnitude 2.

On an elliptical cylinder defined by ¢ “= ~¢ = -~ ¢,, with major semiaxis ¢, = ¢ cosh
¢, from [61d,f,b), after inserting sin? ¢ = 1 ~ cos? ¢,

~-%
~% 2 2
2 a2 =z
q=—1- cosh? ¢, - - LY (61p]
¢ V2 2 e\ 2 ,2 P
c® cosh® ¢, c* af

At large distances the elliptical streamlines approximate circles, and, since sinh &

becomes large and nearly ogual to cosh ¢, it is readily seen with the use of [61e] that

1

g = ——
(=% + y2)*%

approximately. Thus the flow approximates that of a line vortex (Section 40) at the origin.

If ¢ “and ¢ are replaced in these last formulas by ¢ 7k, ¢ 7k, then all velocities are
multiplied by & and the magnitude of the circulaticn bhecomes 2rk.

The variables ¢ and ¢, defineri in terms of z and y by [61b,c], can be ured as coordi-

nates on the zy-plane; this use, and che geometrical properties of the transformation, are dis-
cussed in Section 82.

Among other possible forms, z = ic cosh w gives the same field of flow rotated through
90 deg, with the foci at (0, *¢); 2 = ¢ cos w or 2 = ¢ cosh (iw) is the conjugate transformation,
in which ¢, ¢ are replaced by ¢, —¢; and 2 = ¢ sinh w gives the original field rotated through
90 deg and with ¢ increased by 7/2, to which the conjugate transforwation iz z = Z¢ sin w.

(For notation and method; sce Section 34; Reference 1, Article 66; Reference 2, Sec-
tions 6.10, 6.30.)

62. STRAIGHT SPOUT

z2=w+ e [62a]

Since
e =eP Y = eP (cos ¢+ isiny), 2=z +iy, and ~ u + v = dw/dz,

c=¢p+ePcosy, y=i+e?siny, [62b,c]
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dw (dz)'"l 1 1
dz \dw/ —;,  w

+e =1+e¢(co.=¢+z'sin://)

d 1
N i =, C=(1+e2% 1269 cos )% [62d,e]
de G
1 14
¢==~—(1+e? cos ¥), ¥ = -~ ¥ sin . {62f,]
2

(;2

Since 1~ 2¢%+ ¢26 - (1 - e$)2 2 0, it follows that 2 % S 1 + ¢2%; and the equality
sign holds only if ¢ = 0. Hence G = 0 and dw/dz ~ o onlyif ¢ = Oand cos ¢ =~ 1. Thus
singulas points occur at 2 = -1 and y = £ 5, £ 3, £ 5y

The streamline for ¢ = 0 is the z-axis, on which z = ¢ + 9, Along this streamline,
while ¢ is negative and numerically large, ¢ =z, approximately. As ¢ increases, z increases,
and al ¢ =0, 2=1;85 ¢+ + 0, 2 4 o0, Again, il ¢ =27 y=2nand 2 = ¢-e?. Here z in-

creases to a maximum of -1 at ¢ = 0, and then returns toward — e as ¢ =+ + ., The two

straight lines on which y =% 7 and 2 § -1 may be regarded as streamlines bent back on them-

seives, The intermediate streamlines, for -7 < ¢ < , lie between these straight lines; for

large negative ¢ they are almost parallel, but for large positive ¢ they fan out and cover the
entire z-plane. Half of the flow net, which is symmetrical about the z-axis,
ure 95. For |y |>n, curves are obtained which overlap some of those
this results in multiple-valued velocities such values of i eannot he

is shown in Fig-

already obtained; since
1o ﬂl

If plane, semi-infinite boundaries are inserted along the two straight streamlines, a
motion is represented in which the fluid is flowing into and through a spout or mouthpiece
bounded by two paraliel walls 2 apart.

Y
T
///f\ ‘
SN L
// \, ’/&\’ \:
/‘\\ e * /_“——"5'-5
. . 4 \)/ ,‘,( \‘ +
Figure 95 — [Ialf of the symmetrical flow A Nt Tt
net for fluid entering a straight two- I~ x', :,/ :X,E-?M
dimensional spout extending toward ! Bam i
A < . . - :l‘u,
the left to infinity. (Copied from AT I )
Reference 253.) HEESRSg R
e v+ 1
xristt )9 ¢ s AR N}
-1
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Within the spout, except near the entrance, ¢ is large and negative and ¢ = 1, approxi-
mately. The total volume of the inflow per second, per unit of length perpendicular to the
flow, is the value of Ay between the walls or 2 n. Along either wall ¢ = lu| = (1 - e¢)"l;

hence at the edge, where ¢ = 0, ¢ » «. Inside the spout, ¢ + ~ « as z » — = and ¢ » 1, where-
as outside ¢ + + « along any streamline and ¢ - 0. On the central or z-axis, ¢ = |u| = (1+e¢)"1.

Tho more goneral transformation

2 =c(gw + e8¥) (62h]
or

z = clgg + e8P cos (9], ¥ = cloy + e8P sin (gy)],

where ¢ and ¢ are real constants and ¢ > 0, represents a spout 2nc wide; for, when gy = Lo,
y = £ ze. All velocities are changed from the values stated previously inthe ratio 1/cg. If
g < 0 the fluid is issuing from the spout, but the flow pattern is the same. Ca the walls,
Y = ¥ /g, and the volume of outilow is 2r/g.

(For notation and method; see Section 34; Reference 1, Article 66.)

63. DIVERGING SPOUT

1~
2= 1 (1 ~e™ ")+ e(1=mMw g<n<ys {63a)
1 -
z = == (1 -e~"® cos (mh)] + eC1= m$ cos [(1 - a)l, (63b]
n
y = =2 ¢=r sin (ny) + ¢! =P sin [(1 - n)y], (63¢)
n

il =(1-n)(2 +e¥)e™ ™
- .

This is a generalization of the preceding transformation, to which it reverts if 2 - 0.
The streamline for ¢y = 0 is again the z-axis. If ¢ = £ 7, since cos (1-n}x = — cos nn,

sin (1-n)r = sin nn,

1-n 1-n
z= - ( +e¢) e~"® cos nn,
n n

1~
yai( n+e¢) e~"® sin nn

n

or, as may be verified by substituting the formula for z,
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1..
y=t( n-x)tannn.
n

Thus the streamlines for ¢ = % r are straight lines inclined at angles ¥ ar to the positive
z-axis. These lines do not cross the axis but end at the points

x
1
n n n

(1 -1 cosnr , sin nn)
b

at these points dz/d¢ = 0, ¢ = 0, and z as a funct.on of ¢ has its maximum value,

The fluid is thus flowing into a diverging channel or spout with parallel walls inclined
at an angle 2 nr radians to each other. The opening is (2 sin n7)/n wide. The volume of fluid
that flows out per second, per unit of length perpendicular to the zy-plane, is the total incre-
ment of s acrose the opening or 2. Part of the flow net for n = 1/4 is shown in Figure 96.

If in the formulas ¢ and ¢ are replaced by ¢/k and /k, respectively, ¢ = % 7k on the
walls and the volumetric rate of outflow is 2 nk. If & < 0, the flow is reversed. If the expres-
sions given for 2, 2, and y are all multiplied by ¢, the opening is (2¢ sin nr)/n wide. Both
changes may be made. Velocities are multiplied by % or by 1/¢, or, if both changes are made,
by %/c.

For n = 1/2, the spout becomes a slotted plate and the transformation reduces to a mod-
ified form of that in Section 61. For 1/2 < n < 1, the transformation merely repeats itself with
changes of scale, orientation, and direction of flow.

(For notation and method; see Section 34; Reference 1, Article 66.)

64. TWO-DIMENSIONAL PITOT TUBE

z2=w+lnw. [64a]

—
Figure 96 — Flow net for fluid entering ¥
a diverging spout. See Section 63. M
{Copied from Reference 255.) |PRR] iz
25

143

C e = e — ey o

-—— = e -




This transformation may be obtained by superposing a uniform velocity upon the flow
out of & spout having parallel walls in such manner as to reduce the fluid to rest within the
depths of the spout. It is convenient first to reverse the fiow through the spout by substitut-
~w, for w in Equation [62a], which gives

-w
2=~ +e i {64b]

For uniform flow at unit velocity toward negative z, the complex potential is w, = 2,

with ¢, = 2. Combining the two flows, the complex potential is w = Wy + W, =w +2. Sub-

stitution of w, = w - 2 in Equation [64b] gives 2 = —w + 2 + e™* For w = e~ * % which is
equivalent to Equation [64a).
Then, from z =2 + &y, w = ¢ + &y,

z=¢+%ln(p? +y2) y=y +tan”l =, (64c,d)

il

dz\"1 :
-u+iv=(—i) = 2 = ¢+“b. ’
dw l+w 1+¢ +2¢

_ by Y
(1+g)2y?

U= [649,f]

(1+ )% +y?
Since y changes sign with ¢y, symmetry exists with respect to the z-axis. Furthermore,
the expression for y is many-valued, with a period of 2. To make y single-valued, lot
tan~! (4 /¢) have always the sign of ¢ and be numerically less than n.
Assume that ¢y > 0, Then, if ¢ is large, so is y. Furthermore, along any streamline or
curve for constant ¢, as ¢ ranges from + e to ~ «, ¥ continually increases, with a total in-
crease of m, while z decreases on the whole from + e to -, If ¢ > ¥,

oz
— =1+ ¢

6¢ ¢2+(/12

>0,

since the enuation, $2 + ¢ + 2 = 0 has no real roots for ¢; hence z varies always in the
same direction along the streamline. If 0 < ¢ <Y, however, = retrogrades for a time as ¢
decreasas, giving an S-shape to the streamline, as illustrated in Figure 97.

To locate the streamline for ¢ = 0, keep ¢ constant and let ¢y - 0. Then, if ¢ >0,
from [64c,d] y-tan~!(s). )0, 2+ & +in¢p. Hence, with y = 0, as ¢ varies from + o to 0,
z traces the entire z-axis and ¢ » 0 a3 z » ~ =. If, however, ¢ <0, y ~ tan™! (y/p) » % #
and z » ¢ + in(-¢). Here (In¢2)/2 is written as In{~p) rather than as In ¢ hecause ¢ < 0
and the real logarithm is intended. Hence, as ¢ decreases from 0 to - ~, z first increases
from - = to a maximum value of -1 at ¢ = ~1, where dz/d¢ = 0, and then decreases again to
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Figure 97 — A few streamlines for fluid flowing past a two-dimensional
pitot tube. The z-axis is drawn along the median plane of the tube.
(Copied from Reference 256.)

~ e, For, a positive number always exceeds its logarithm, and toward infinity their ratio in-
creases without limit. Furthermore, the lower half of the diagram is symmetrical with the up-
per. Hence, to sum up, the streamline for ¢y = 0 follows the z-axis to z = — «, where ¢ = 0,
returns along both of the straight lines y =7 and y = -7 to £ = ~1, where ¢ = ~1, and then
retraces these lines to & = — «», where ¢ = - .

Streamlines for a value of ¢ close to 0 dip a certain distarnce into the space between
the two lines and then emerge again.

Singularities occur only at (-1, ), where ¢ =~1, ¢ = 0 and ¢ » . With the defini-
tion of tan™! that has been adopted, however, the velocity is discontinuous across the lines
y = * 7, because of the discontinuity in ¢. In the space between these lines, ¢ » 0 as z-+ -,
since both ¢ and s then vanish; but elsewhere toward infinity ¢ + 1, since [¢] » = or Jg| » =
or both, so that diz/dz - 1.

In a physical case, therefore, boundaries m:ust be inserted along the straight lines
z < -1, y=%p They form a two-dimensional pitot-tube with parallel plane walls 2 7 apart,
placed in a stream of fluid approaching at unit velocity in a direction parallel to the walls.

A few of the streamlines above the z-axis or median plane, labeled with values of ¢, are
shown in Figure 97. Along the walls and also aiong the z-axis, z =¢ + In|¢|, ¢ = |u|,

Y=~ i—-"b—-; on the walls ¢ < 0, on the z-axis, ¢ > 0.
+

The results = y be generalized, as in Section 62, by replacing 2, z, y, w, ¢, ¢, in all

formules by 2/¢, 2/¢, y/¢, gw, g¢, gy. The tube is then 2 ¢ wide, and the values of all
velocities are divided by cg.

(For notation and method; see Section 34; Reforence 1, Article 66.)
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65. LAMINA BETWEEN WALLS

sinh w = ¢ sinh 2, g real and ¢ > 1. {65a]
sinh ¢ cos ¢ = ¢ sinh z cos y, cosh ¢ sin ¢ = ¢ cosh z sin y, {65b,c]

from w = ¢ + iy, 2 = z + iy and hyperbolic formulas in Section 32. The functions ¢ and ¢
are many-valuod. It is readily seen that continuous values can be chosen so as to satisfy
the following description.

¢ has the sign of z and ¢ that of y; if ¥y = 0, ¢ = 0. Thus the z- and y-axes represent
planes of symmetry. AS z -+ e, ¢ + e also; (urthermore, coth ¢ + coth z » 1, so that, since
from [85h,c] coth ¢ tan ¢ = coth z tan y, ¢ » y. For all values of z, ¢ = ¥ on the lines y = 0,
¥ =r/2, y = r; then one of Equations [65b,c] is satisfied automatically and the other fixes ¢
in terms of z. Furthermore, on the y-axis, wherever sin y > 1/g, in [65¢], ¢ cosh 2 sin y > 1
and this equation can be satisfied only if ¢ > 0; then, to make z = 0, cos ¢ = 0. In particu-
lar, cos ¢y = 0 and ¢ = /2 on the segmeat defined as follows:

n

i
..-—cos-x-—-Syé 1
2 g

" -1
3 + cos 7
On this segment of the y-axis ¢ is discontinuous, since here cosh ¢ = g sin y > 1 but ¢ must
change sign with = as the y-axis is crossed.

For a physically possible case, a plane lamina must be inserted along the segment of
the y-axis in question; and walls may also be inserted slong the lines y = 0 and y¥ = 7. Then
the flow is represented between these walls, with unit velocity at infinity where ¢ » y, past
2 lamina of width L = 2 cos™! (1/g) placed perpendicular to the walls and midway between
them; see Figure 98a.

|
—p——
x I }Zcos“l » x }Zcos“‘i
g 14
l } 2cos~tl
g

Figure 98 — (&) Lamina between walls, or (b) a grating of laminas;
(c) slot in a partition between walls.

On the walls, Y =y, sinh ¢ = ¢ sinh z. {s5d]

On the median line, y = 7/2, ¢ = a/2, cosh ¢ = ¢ cosh z. {65e]

On the lamina, Y = n/2, cosh ¢ =g siny. [65f]
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In the plane containing the iamina but between it and the walls, ¢ =0, v = 0 and

. . d cos
sin ¢ = ¢ sin y, u=——¢=—. 9! Y

9y V1 - g2 sin? y

Without the wells, the formulas may ropresent a stream falling perpendicularly upon a

{65¢g,h]

grating composed of such laminas lying in a common plane and spaced r apart; see Figure 98b.

The similar transformation cosh w = g cosh 2 replaces the lamina botween walls by an

opening of width 2 sin™! (1/¢) in a tranaverse partition between the walls; see Figure 98c.

Kinetic Energy of the Fluid

If the lamina moves in translation parallel to the walls at unit velocity, with the fluid
at rest at infinity, the complex potentizl becomes « — 2, where w is still given by [65a]. Sub-
stituting w - 2 for & in Equation {76a], and U = 1, the kinetic energy of the fluid is

=50 (%) § (- 2)ds [65i]

since for the lamina § = 0. Let the path of integration be displaced into a long rectangle with
sides on the walls and ends at z = * I, This does not alter the value of the integral; see Sec-
tion 29. On either wall, dz = £z and v ~ 2z = ¢ ~z since ¢ = y; hence it is easily seen that
the contributions of the walls to the integral cancel each other. Over each end, ¢ is practi-
cally constant and equal to its value at the corners, so that, when z = ! and [ is large, from
(6541, sinh ¢ being positive e® = ge*, approximately and ¢ = z + Ing; whereas when & = -1,
sinh ¢ is negative, P = ge *and ¢ =z - Ing. Thus the integral over the two ends is

rﬂ

0
f(w - 3)dz = of” (Ing+t ~ty)idy+ [ (-lng+iy -iy)idy=2 ¥ (Ing) tdy = 2xtlng.
g
Hence

Ty=aplng.

Generalization

The distance between the walls, or between the centers of the laminas in the grating,
mdy be clianged from = to g, and also the velocity at infinity from unity to U, by substituting
in all formulas n3/a, nz/a, ny/a, nw/al, n¢p/al, ayp/aU, w/Ufor 2z, 2, 9, w, ¢, ¢, 4,
respectively. Thereby all velocities are multiplied by U; the width of the lamina becomes

2a 1

L =~ cos™l —; (651
a g

and the kinetic energy of the fluid per unit length of the lamina is
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1 1 L
Tla;pa2U2ln9"‘;p¢1202 lnsec—’;—a- [(65k]

It L/a is small, using the series for cos and In from Section 33,

. n2 L2
Tl =-p(/2L2 1+ ....) . (651]
8 2442

For notation and method; see Section 34; Refsrence LcveS? and Taylor.33
Y

66. LAMINAS OR CYLINDERS AND SURFACES

A lamina in other positions between rigid walls was studied, with reference to the lift
when there is circulation around it, by RosenheadS! and Tomotika,52 and more generally by
Tomotika and others,53~58 and by Havelock.59 When the lamina is centered but inclined at
an angle to the walls, with tha circulation so chosen as to make the velocity finite at the
trailing edge, the lift is increased by the presence of the walls, largely because the nocessary
circulation is itself increased.

Cylinders of a certain shape between walls, including 2 first approximation to a circu-
lar cylinder, are discussed in Sections 46 and 47. A plate near a single rigid wall was stud-
ied by Villat,%9 Raimondi,®! and Tomotika and others,52=6% and, with one edge on the wall,
by Datwyler66 and Tomotika and Imai.67 The wall increases the lift, at least at small angles
of incidence. The effect of a neighboring frec surface was studied by Tomotika and Imai. 68

A circular arc near a rigid wall was treated by Jones,%9 and, for the case of actual
contact, by Tomotika and Imai.”® A cylinder near a wall was discussed in general terms by
Villat.6°

Circulatory flow between a cylinder and a free surface was treated by Vitali.”}
CIRCULAR CYLINDERS

67. SYMMETRICAL FLOW PAST A CIRCULAR CYLINDER; DiPOLE IN
A PARALLEL STREAM, OR INSIDE A COAXIAL SHELL

2
w= U(z + 2 ), U and a real constants, a > 0. (67al
z

From v = 5 +i{¢ and z =z + 7y,

2 a2
¢=U (1+‘—z-2-)z, O =U<1-—-—2-) y, r=(2? +y?)¥% , 167b,2,d]
r r
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dn T
[+]
Figure 99 — Diagram for flow past / 0
a circular cylinder. z
or
a? a?
¢=U(r+7) cos 6, ;’;=U(T-—) sin @ [679,f]
r

in terms of polar coordinates r, 9, such that z = r cos 0 and y = r sin 6 as illustrated in
Figure 99. The components of velocity are

z2 ~ y2 2
2a‘zx
w=1U (—1 +a? : ), v = _‘_‘,_3[’ [67g,h)
r 4
or
a2 a?
g, =0 (—-1 + —) cos 6, ¢gg=U (1 +——)sin 6, [67i,i)
2 rd
2a? at
q? = U2 (1 ~ —— co3 26 +—) . (67k]
.2 r4

There is a singularity at the origin, whera ¢ +» . Stagnation points occur at (a,0) and (~-a,0).

The z-axis represents a plane of symmetcy for the flow, and the flow net has also a
plane of geometrical symmetry along the y-axis,

At large distances ¢ + Uz and the fluid is flowing toward negative z {if U > 0), or to-
wsrd @ = 7, with uniform velocity U. The formulas represent, in fac., such a uniform stream
superposed upon the flow due to a line dipole at the orizgin of dipole moment u = a2 U, as is
evident from formulas in Sections 35 and 37. The axis of the dipole is directed oppositely to
the stream, .

Along the z-axis ¢ = i, and ¢ = 0 also on the circle r = a. This circle may be taken
to represent a circular cylinder, and the formulas then represent a stream, uniform at infinity,
flowing past such a cylinder. On the cylinder itself ¢ =2 Uz, ¢, = 0, and ¢ = |gg| where
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. Figure 100 ~ Flow net for symmetrical
0 . flow past a circular cylinder.
=3 & (Copied fror Reference 8.)
I
r
gg9=2U sin 6. (671l

The flow net is shown in Figure 1090; the points 4 and B represent the stagnation lines. The
streamlines for ¢y = 0 follow the plane of the z-axis to the stagnation line on the cylinder at
9 = ¢, divide and proceed around both sides of the cylinder to the other stagnation line, then
continue toward negative z.

If the motion is steady, the Bernoulli equation for the pressure p, assumed zero at in-
finity, gives on the cylinder itself

p=Yp(U?- q2) =Y pU2(1 ~ 4 sin? @). [(67m)

Thus p=0at 6 = sin™! (£%) or 6 = £ 30° or £ 150°. At 6= 0°or 180° p = p U2/2; at 6 = 90°
or 270°, where ¢ = 2 |U] and is a maximum, p = -3 p U2/2 and is a minimum. Because of the
symmetry, there ;s no net force on the eylinder,

On the z-axis, where 9 Q or =,

2 4
p=YpU2? (23_ - a_.); (67n])
22 24
on the y-axis, where 8 = 90° or 270°,
a2 gt
pn-—%puz (2—; + ;;). [670]
y

These formulas for p are plotted in Figure 101. The lower curve shows p along the z-axis
and on the surface of the cylinder, plotted against z; the upper curve shows p at points on
tho y-axis outside of the cylinder, plotted horizontally with negative values to the left.
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Figure 101 — Pressure in the symmetrical —~
flow past a circular cylinder, along the
axis of the flow, over the cylinder, P b{ % P .
and in the equatorial plane. :
See Equations {67m,n,c]. . )

At points ingtde the cylindrical surface, the formulas may be used to represent the
flow caused inside of a rigid cylindrical shell of radius a by a line dipole of moment p = a2l
on its axis, In this use of the formulas, U represents merely a constant having the value
w/a?.

Changing the sign of U reverses all velocities, without affecting the flow net or the
pressure.

(For notation and method, see Section 34; Reference 1, Article 68; Reference 2,
Section 6,22, 6.23.)

68. TRANSLATION OF A CIRCULAR CYLINDER

By changing to a fiame of reference that is moving toward negative z at velocity U, a
description is obtained of a circular cylinder that is moving toward positive z at velocity U
while the fluid is at rest at infinity. The change adds to w a term ~-Uz, representing uniform
flow of the fluid toward positive z, so that, from [67a],

2y 0 sin
w=l=, 4 =02l = ¢ = ~a?l) =2, [68a,b,c]
3 r r

These formulas represent the dipole transformation, as discussed in Section 37. The axes of
coordinates move here with the cylinder. The streamlines are arcs of circles, as itlustrated
1 Figure 102.

The velocity components and the value of ¢2 are:

2 2

2 - 2z
u = a2l : v= aQU*-—}I 168d,e)
r 7
os 9 sin @ a*U?
q,= a?U ] 6= a2l ) qg =TT [68fsg1h]
r r2 ré
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Figure 102 — Streamlines around &
circular cylinder in translation.
(Copied from Reference 1.)

Thus on the cylinder ¢ = |U]. There are no stagnation points, but at the points § = 0 and
0 = 180° the fluid is simply moving with the cylinder,

The distribution of pressure on the cylinder is the same as in the last section, and the
net force on it vanishes if the motion is uniform.

The kinetic energy of the fluid per unit of length of the cylinder is

00 am
1 ,
T, =-§'pj drj g’rdo =-;'- pa?U2. [68i]
a 0

(For notation; see Section 34; Reference 1, Article 88; Reference 2, Section 9.20).

69. FLOW WITH CIRCULATION PAST A CIRCULAR CYLINDER

To introduce circulation around the cylinder, it is only necessary to add appropriate
terms from Section 40. Then [67a,e,f] are replaced by

2y ir .
w=U(z+2-)+-—-ln-i, z=re'l, {695,b]
Y 3 2 a

2 r 2 r
p=U (r + a—)cos 0-~~—806, y=U (r -i>sin 6+— In L‘. [89c,d)
r 2 r 27 a

Here r, 0 are polar coordinates with origin on the axis of the cylinder, whose radius is a, and
with @ measured from the positive z-axis, as in Figure 99; {/ and I" are real constants.
The velocity components are

a? r
g =U (-—1 +—-‘9cos 0, g9 = U (1 + —-) sin 8 + — [89e,f]
¢ 2 Snr
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Thus at infinity ¢, = - U cos 0 and g9 = U sin @, so that the flow is parallel to the z-axis and
directed toward negative z if U > 0. On the cylindct = |g4| and g4 = 2U sin 6 + '/(27 3).

The constant I" reprosents the circulatior around any closed curve encircling the cyl-
inder once in the positive direction, or in the direction of increasing 0. For ¢, like 6, is
many-valued; ¢ decroases by " in going around the cylinder.

The streamlines for I = 0.6 (4zal)) are illustrated in Figure 103, and for I" = 6ral in

ry

-
X i l\\, ; 4
Figure 103a
g == T pp—ttel = = A (1
210° 40° 21(° 300° k<[ 3 .
180° ! 360°
PP [ = 0.6 (nal)
w{, na
[ luzp Uz
-5 \ /

N

Figure 103b

Figure 103 .- Flow net for a stream with circulation past a circular cylinder, and
distribution of pressure over the cylinder, plotted against 6. See Section 69.
(The flow net is copied from Reference 8.)
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Figure 104. The excess pressure on the cylinder, p — p_, for steady motion, is shown in each

caso in terms of pU2/2 as a unit. The angle ¢ is plotted as adscissa toward the left from 0 to

m, then toward the right; ‘“*above’’ and *‘below"’ refer to the upper and lower halves of the cyl-
inder as drawn.

Figure 104a
AT SR S ¢ Ll 3 P
o\ "180° uw 13 2/]0° 300° kX]td 360°

/ PP

™~
< 1-4,02 I = 6mal) S
-10

=20

~ L~
S~ | by
T D

Figure 104b

Figure 104 — Streamlines for flow with stronger citculation past a circuler
cylinder, and distribution of pressure over the cylinder. See Section 69.
(The streamlines are copied from Reference 257.)
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Stagnation points occur where ¢, = 0 and 99 = 0. The equation ¢, = 0 is solved either
by r = a or by cos 0 = 0. If the solution r = a is poscible, strgnation points occur on the cyl-
indor at positions such that, to make 79 =0,

r
sin 0 = ~ 7 (6921
They are at A, B, in Figure 103. From [69g] and [69f] it is easily seen that the presence of
circulation shifts both of the stagnation points toward the side on which it reduces tha fluid
velocity.

Suppose that I" and U have the same sign. Then, if I' = «ral, the two stagnation points
come together at @ = - 90° If °/U > 4na, the equation for sin § cannot be solved; but now it
is pussible to assume that cos 6 = 0, sin 0 = - 1, and to solve the equation 9¢ =0 for ». Thus
as ['/U is increased above 4ra the stagnation point moves out along the radius ¢ = - 90°, oc-
curring at

f"——' 1+y1

4nl/ (69h]

The streamline that passes through such a stagnation point cuts itself perpendicularly and
encircles the cylinder, as in Figure 104; all fluid inside it remains inside, circling round the
cylinder along closed paths.

Changing the sign of I" reverses the flow pattern and alters all velocities as if by re-
flection in a mirrcr along the axis 0 = 0 or ». Changing the signs of both I" and U, however,
merely reverses all velocities without other change.

If the motion is steady, so that the pressure is given by the Bernoulli equation, it is
easily seen from symmetry that the resultant force on the cylinder is a force transverse o the
direction of the stream, or a lift. Drag, in actual fluids, is an effect of viscosity, which is
here assumed to be absent. On an element of area of width a d6 and of unit length in tha di-
rection of the axis, the force is pado, directed toward the axis. Hence the total force in the
direction ¢ = 7/2 on unit length of the cylinder is, substituting ~pg2/2 for p and the value of
g¢? for 2,

2n
1
L - _I (_5 pqz) asin 046 =plU [69:]
0

Here ~ sin 6 is introduced in taking a component of the force.
If the velocity at infinity makes an angle y with the nogative z-axis, and if tha axis of

the cylinder is displaced to the point z = 2, =z, +1Yy,, then

155

e e [




2 . z2-2z
W= U[(a ~2,) etV 4 2 e‘Y] + ir In l, {69]
2 -2 2n a

a2 r a?\ | r r
¢=U r+-r—-cos(0-y)-§; 0, ¢=U r-T)sm(o-y)+;; ln-z, [62k,1]

&«

a? a? r
q,aU(—l + —-—)cos 9 -, q0=U(1+——-)sin(0-y)+——-, (69m,n]
r 2 2nr

r
where 2- 2z, = LI {(z -xl)z +(y - 3/1)2]%:
and @ is & polar angle about the point 2, or 0 = tan™! [(y - ¥)/(z ~2,)). For, it is obvious
that the entire flow is displaced in the desired manner; and at infinity the torm Uze ™Y pre-
dominates in w and represents uniform flow at the angle y, as in Section 385.
(For notation and method; see Section 34; Reference 1, Article 69; Reference 2,
Section 7.12.)

70. TRANSLATION OF A CIRCULAR CYLINDER WiTH CIRCULATION

By viewing the situation discussed in the last section from a frame of reference that
moves with the fluid at infinity, as in Section 68, formulas are cbtained for the case of a cyl-
inder that has circulation around it but is moving toward positive z at velocity U, while the
fluid is at rest at infinity. For this case

a® i 2

w=-—— t—Ip—, [70a]
F] on a

cosg T sing T
4=a20 22 —0, y--a s‘r“ +—1In -;-, (70b,c)
n “ll
cos 0 sin 0 r
q' = azU 2 N qa = 02(] : + é_; [70d,e]
r r m

The axes of coordinates move with the cylinder.
A stagnation point can now occur only where cos § =N and also

T

9na?l

=sin 0 =%1. [70f)

-

For I'/U >0, 0=~ 90% for T/U <0, 0 =90% and in either case

H . {70g}

r = %ra?
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Figure 105 — Streamlines around a circular \\_-—/
cylinder in tmnslnfplop and with cx‘rcqlzfuon Figute 106 ~ Same as Figure 105 but with
around it; the fluid is at rest at infinity. the circulation four times as stron
See Section 70. (Copied from &

Reference 1.)

Since, however, it is necessary that r 2 a, a stagnation point can occur only if |I"} £ 2xa|U].
If T = 2ral, it lies on the surface of the cylinder.

Streamlines for I' = 37aU/4 and I" = 3zalj are shown in Figures 105 and 106.

The pressure and the lift on the cylinder are as in the last section.

Changing the sign of I" changes the diagram as if by reflection in the z-axis. Chang-
ing the signs of both I' and U merely reverses all velocities.

1f the direction of motion of the cylinder makes an angle y with the positive z-axis,
from (69j] with 2, = 0,

2y . 4r
W = e e'y + %— ln %, [70h]
2 ™
a2l a?l | r r -
¢==r— cos(()—-y)—g 0, ¢'=——-;—-sm(0-y)+-2—” Ir.;; [70i,j]
a?U a?l r
g =——cos(0~-y), qg= vy sin (0 - y) +$ . (70k,1]
2 r 2

(Reference 1, Article 69; Reference 2, Section 9.60.)
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71. CYLINDER AND VORTICES IN A STREAM

(1) A single vortex. Let a cvlinder of radius a bo stationary in a stream approaching at
velocity U toward nogative z; let there be circulation I" about the cylinder, and also a line
vortex with circulation I', located at the external point 2 = b = ~helY, or (-h cos y, ~A siny),
tho origin being taken on the axis of tho cylinder. Here % and y are real, and the vortex is lo-
catod on a radial line inclined at an angle y to a radius drawn in the direction of the stream;
see Figure 107. This case is of interest in tha theory of wakes.

The complex potential representing the partial flow caused by the vortex is given by
Equation [42a] with 4 replaced by I'\/2n, 2 - c by 2 ~bor 2 + he'Y, and z + ¢ by 2 - b where
b’ = —(az/f'a)e")'; for, as shown in Section 42 (B), the image vortex lies on the irverse line with
respect to the cylinder and hence on the same radial line as the actual vortex Sut at a distance
a? /k from the axis of the cylinder. In this flow the circulation around the cylinder is -I.
Circulation [" + I, must then be added in order to make the total equal to I'. This can be ac-
complished, in superposing the {low due to the stream, by using Equation [69a] with I" re-
placed by I" + ;. The complete comnlex potential thus constructed is

1 g2\ HT+1Y) PR 2~b
wnb’(a+—->+———-—~ln-—+~—- In [T1a]
2 2 a 2n -’

2

Expressions for ¢, i, and the velocity are easily derived if needed.

The force on the cylinder may be found from the Blasius theorem, Equation [74g), pro-
vided the vortex is assumed to remain stationary. Here

y _‘_L
N Figure 107 — A line vortex at **d* near
\ a circular cylinder in a stream.
z
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du U '1 az) W+l o il ( 1 1 ) (71b]
— ———] i e——— e ) — — . b4
( 22 2n z 2a \z2-b z2-b7

The force is obtained from the residues at 2 = 0 and 2 = 4% compare Sections 30 and 42. It
is found that

Ty /T4l AT\ a?
X= ™ - ' az/cos Y= 77 ol U sin 2y, (71c]
oIy T+, &L, a?
Y=pl'll + — ( - ) sin y + — pI", U cos 2y. (71d]
2 h A2 ~ g2 A2

A negative value of z represents a force in the direction of the stream or a drag.
If ' = ~I"}, the formules are simplified. Streamlines for such a case are shown in

Figure 108; here I" is positive and the flow is from right to left.

Figure 108 — Streamlines near a circular cylinder due to a stream with
circulation " about the cylinder and a line vortex of circulational
strength ~I". (Copied from Reference 28.)

(2) Several vortices. If several vortices are present, the forces due to them are simply
additive; each term in X and Y that contains [, is replaced by 2 sum of such terms, one for
each vortex. In Figure 100 are shown streamlines for a symmetrical case with " = 0 and two
vortices. (Referonces Miuller28, Bickley’2, and Morris73.)




.

Figure 109 — Symmetrical streamlines near
a circular cy'inder caused by a stream
and two ¢qual and opposite vortices.
(Copied from Reforence 28.)

FORCES ON CYLINDERS

72. THE DISTANT MCTION

The fluid at infinity is usually assumed to be either at rest or in uniform motion.
Sometimes it is of interest to know how rapidly this condition is approached.

Suppose, for generality, that at infinity the fluid is moving uniformly at speed U, and
that the motion is irrotationa! everywhere except perhaps inside a certain cylindrical surface
S, which may enclose within it one or more solid cylinders. The cross section of S need not.
be circular. Then at large dis.unces from S a closer approximation to the actual motion can
be secured by superposing the following three motions:

(a) The uniform flow at speed U;

(b) A motion in which the velocity is everywhere directed along a radius from any chosen
axis inside § and is of magnitude

Qo= 577 [72a]

(c) A circulatory motion in which the velocity is perpendicular to the radius drawn from
the chosen axis and of magnitude

= — (72h}

Here r denotes distance from the axis,

V is the net volume per second that flows outward #cross S, per uxit. of its length, due
to sources or sinks inside it, and

I is the circulation along any path encircling § once in the positive directica.

v, Ty 4T and I" m>y be positive or negative.

160




To establish this result, let the potential & for the zctual motion be written as the
sum of the potential for the approximate motion thus cor:tructed and a fourth component ¢,
or

1% r ,
¢ =dy o lnr-g; 0+

where ¢ is the potential for the uniform flow; see Section 40. The partial motion represented
by & will then be one in which the net outflow or inflow across S vanishes, and in which the
circulation likewise vamshes around every closed curve that does not cut S. Hence, in par-
ticular, ¢ "is singled valued, and so is the corresponding stream function ¢ % In such a mo-
tion, it can be shown that the velocity vanishes at infinity at least as fast as 1/r2, as it does,
for example, in the symmetrical flow caused by a moving sircilar cylinder. At large distances
from S the motion represented by ¢’ may accordingly be disregarded i comparison with the
other components, and only motions (a), (b), and (c) remain.

The corresponding theorem for the complex potential 1s that, if du/dz is differentiable
and single valued outside a curve S, and also finite at infinity, then, at sufficiently great
distances from S, dw/dz can be expanded in a Laurent series of the form,

du by by by ,
-(;—:....—-—+—-—+—~ra0, [720]
2 3 2 2
2 2
as stated in Section 27, llence, by integration,
62 bl
w=....-—+——+a0+clnz+alz (72d]
22 2

where . . .. bz’ b,y @y, c are constants, real or complex. The last two or three terms of this
series represent the approximation just described; the real part of ¢ gives a term representing
the sources, the imaginary part a term representing the circulatory motion. The term in In 2
is many valued,

If the surface S represents a rigid cylinder, there can be no source and ¢ must be purely
imaginary. Furthermore, the largest term that depends upon the shape and motion of § is the
term bl/z, which, as in Section 37, represents a dipole. ‘Thus at large distances the effect of
a moving cylinder with no circulation around it is that of a line dipole located in its neighbor-
hood.

1t is of interest, finally, to consider the effect of a conformai transformation upon the
distant motion. In an ‘mportant class of single-valued transformations the plane is left un-
altered ai infinity. Such a transformation from 2 to 2’ can be written, toward infinity, in the

form
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z=2’t — ¢ — .., (726]

Then, substituting in (72d), using the binomial theorem and aiso the series for in (1 + z) after
writing In 2 =1p 2" +1In [1 + (2 - 2°)/2"),

oy +ay by
U=.... ———— +a,+clnz’+az" {72f]
zl
Thus the equivalent dipole at infinity is in general changed, in correspondence with the

change in the shape and size of the cylinder. The circulation and soudrce strength remain un-
changed,.

73. LIFT ON A CYLINDER; THE KUTTA-JOUKGWSKi THEOREM

In Section 70 it was shown that a circular cylinder moving through fluid otherwise at
rest experiences no drag or force opposing its motion, but, if circulation is present, there is

a transverse force or lift of magnitude
L =pTU (73a]

per unit of length of the cylinder. Here p is the density of the fluid, U is the velocity of
translation of the cylinder perpendicularly to its length, and I is the circulation in the fluid
around any closed path encircling it once. ‘The fluid is assumed, as usual, to be incompress-
ible and devoid of viscosity. The directios of the lift can be found by rotating the direction
of motion of the cylinder through 90 deg in the direction of rotation suggested by [", as illus-
trated in Figure 110.

Figure 110 — [Jlustrating direction of the lift on a cylinder.

It was shown by Kutta and independently by Joukowski that the same statements aro
true for a cylinder of any form. Tris may be shown by considering the changes in the mome1-
tum of the fluid as the cylinder passes.

Let a frame of reference Le used relative to wh'ch the cylinder is at rest while the
fluid at infinity is moving with velocity -U. Consider the miass of fluid that lies, at any time
t,, between two planes drawn perpendicular to the axis of the cylinder and unit distance
a;)art, and also between vwo other planes PP, P‘P\’, drawn perpendicular to the direction of
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Figure 111 — Diagram for
calculation of the lift.

Q‘l ’)"

Q b
U and far removed from the cylinder; see Figure 111. In time §¢ the boundaries of this fluid
are displaced through a distance U §¢ into new positions QQl, Q'Ql’. At the end of the dis-
plecement, the pa-t of the fluid that lies between PPI, and ¢ Q,"has the same momentum as
had the part of the fluid that occupied this position origiaally, since the motion is steady.
Hence this region may be disregarded; and the net change in momentum of the mass of fluid
under discussion is equal to the momentum present in the newly occupied layer of space
Q@ PP, minus the momentum that has disappeared from the layer @ Q" PP, which has
been vacated.

In calculating the momentum in these two layers, use may be made of the approximate
description of the motion given in the last section. Here V = (, since there is no outflow
from the cylinder. The uniform motion at velocity ~U contributes nothing to the difference
in momentum hetween the two layers. The velocity ¢~ gives rise, on the whole, to no momen-
tum having the direction of U, because of symmetry, but it does give rise to transverse
momentum.

Take the axis of polar ccordinates in the direction of U, Then an element of cross-
sectioral araa of the layer QP Q P is a parallelogram of height U 8¢ on & bass of

rd 6/(-cos 6), as in Figure 111, and, using [72b] for ¢, the transverse momentum in this
layer is

[ ( L cos e) st —22 - L ris
-~ ~ — €O —_— =~ .
g . 2nr cos 0 2 °

Bqual but oppositely directed wansverse momentum was initially present in the layer
@’¢{ P’P" The net change in transverse momentum of the original mass of fluid is thus
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twice the momentum in the first layer or p['US¢, in the downward direction in Figure 111. Ry
the law of action and reaction, this must equal the opposite momeatum given to the cylinder,

or Lt. Equation [73a] follows; and the direction of L is easily seen to be as stated.

74. THE BLASIUS THEOREAM.

This theorem provides useful formulas for the force on a cylinder of any shape, and
also for the torque or monient of force, in the case of sweaay two-aimensionat mouion.

Consider an element of the surface of the cylinder which has a width ds and unit length
in a direction perpendicular to the zy-plane, or to the planes of motion. Let the tangent to
ds, drawn in the counterclockwise direction around the cylinder, make «. angle @ with the
r-axis, as shown in Figure 112, Then the force on the clement due to the pressure p, taken
positive when directed toward the interior of the cylinder, has a magnitude pds and

Cartesian components

Figure 112 — Force on clement ds of the
suriace of a cylinder due to a pressure p.

dX = -pdssin 0, dY = pd. cos 0

But ds cos 9 = dz, ds sin 0 = dy, where dz and dy are the comporents of ds. Hence

X= —Jp dy, Y =dez [74a,b)

\lso, by multiplying eack component of force by its lever arm, the total moment L

about an axis passing through the origin is similarly found to be

N = jp(xdz +y dy) =j prdr [74c]

where r2 = 1% 4 yz.
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These formulas are general. If, however, the motion is steady, then, the pressure
being taken as zero at points where the velocity g is zero, p = - pg?/2 where p is the density
of the fluid and

~

1 i 1
X= = ,,J Q?dy, ¥ =~ pJ ¢%dz, N = - 3 qu2(x(1z+ ydy) [74d,e,f]

o —

It was shown by Blasius that these expressions could be transformed en ae tn ~eme-i-
onty 1ntegrais of a certain analytic function of 2 where 2z = ¢ + 2y; the methods of complex-

variable theory then become available for their evaluation. From Equation [74d,e], since

g2 = u? + 02,

) i 2. 2 .
X—1Y=-§-p (u® + v°) (dz - idy)
Now (u? + v2) (dz~idy) = (~u+4v) (~u—~iv) (dz-idy). Since the path of integration is part of a

streamline, the vector (dz, dy) is parallel to the velocity or to (u, v) at the same point; hence
dy/dz = v/uv or vdz = udy. Thus

{(~u~iv) (dz-idy) =~ udfz+iudy-ivda:—vdy = (- u+1v) (de+t dy),

and, using ~u+iv = du/dz, as in Equations [25i] and {34f], and dz = dz + i dy,
X_iv z du 2d (740]
~tY= — — 2 14g
2 7| \az
The torque requires a somewhat different artifice. Clearly

¢? (zdz + ydy) = (R) (12 + v?) (z + iy) (dz - idy)

where the symbol (R) signifies that only the real part of what follows is to be taken. Tae
same changes as before can be made in this expression. It is then found that, since the real

rart of any integral arises exclusively from the real part of the integrated expression, [74f]

may be written
1 dw\ 2
N=- 5 P (R) -d—z' 2dz [74h]
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The integrals in these equations can be evaluated either for the entire contour of a
stationary body or for any part of it, or even for part of a streamline in the flvid. In any case
X and Y stand for the components of the total force transmitted toward the left across the
chosen path of integration, and L for its moment about an axis through the origin.

The new formulas are especially advantageous when the path of integration is closed.
Then, if dw,’dz is given by a mathematical function that is analytic on the path, ~nd also
throughout its interior except for a few singular pdints, the integrals are given at once by
the sum of the residues of the integrand at the singular points. It does not matter if these
points actually lie in a region devoid of fluid.

As an example, the Blasius theorem may be used to prove the Kutta-Joukoy ski theoren.
Under the conditions specified in Seciion 72, with the cylinder stationary, dw,/dz .s a regular
function everywhere outside of the cylinder; hence, by the Cauchy integral theorem, the path
of integration may be displaced toward infinity in all directions. As before, let the motion be
steady: and at infinity let the fiuid approach at speed U from a direction making an angle y
with the positive z-axis, so that its components of velocity are - U cos y, -U sin y. Then,

in view of the results in Sections 35 and 72, w can be written for large z in the form

. b b
-y . & 1 2 .
v=UeVis+ — Inzra, + — + — «oonnn {74i]
O 0 2 22

where I" is the circulation about the cylinder. The origin may be located at any finite point.
Then, in powers of 1,"z,

] ) [ bl 2b2
& peiv, = L2 174)
dz nz 2 23

du 2 . irv r2 : 1

— ) = U7y, = o (— +26, U0 ) — +ennnl

dz ne \4,72 22

Upon substituting this series for dw/dz in Equation [74g) and noting that ¢ dz2/2" =2m¢

if n = 1but =0 for other integral values of n, as shown in Section 30. it is found that

1 ; , dz ,
X-i¥ =—p (i ruc"‘Y> § Z = iplle,
2 7 2
Hence

X==~pl'Usiny., Y =pI'Ucos y. [74k,1]

The magnitude of the force per unit length is thus (X2 + Y3)% = p['U.
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For the torque, Equation (74h] gives sinilarly

1 ( 12 o dz
N= - p(R) — +2bUe™ _—
2 '1”2 2

Write

5 = b+ ibl", bl’ and bl"renl.

N = 2rpU () (ib,e™"Y) = 2noU (b, sin y - b,"" cos y). (74m)

Thus the torque is independent of I.

If the fluid is brought to rest at infinity by using a frame of reference moving with the
fluid, the cylinder is moving at velocity U, with components U cos y, U sin y, but both force
and torque are the same as before.

The final remark may be made that, if dw/dz contains two or more poles inside the path
of integration, representing line sources, vortices, dipoles, or other sirgularities, these in-
cluded singularities in combination with themselves or each other contribute nothing on the
whole to the integral for the force. Consider, for example, two terms in dw/dz of the form

A/(z~a)", B/(z2-b)™ where n and m are positive integers and 4, B, a, b are constants. The

contribution of these two terms to § (dw/dz)? dz is

A? 24B B? ‘|
[- + + dz.
lz-9?"  (z-a)" (z-0)"  (2-6)"]

Even the middle term here integrates to zero. For, the path of integration may be displaced
toward infinity without crossing a .y singularity of the integrand and hence without changing

the vaiue of the integral; and toward infinity, using the binominal theorem,

1 /1 na \ mb 1
_——-=(_+ —_— e | —
(z-a)* (z-0)" \2" PR / P PL 2"tm

Tkis integrates to zero, since n + m > 1.
In the same way it may be seen that the same product term contributes nothing to the
integral for the moment L provided n + m > 2.
(See Reference 1, Article 72b, where U, V replace ~U cos y, -V sin y, anda, 8
replace 6,”, 4, Reference 2, Section 6.41.)
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75. THE LAGALLY THEOREMS

The following special case of the force action on a cylinder is readily bandled by
means of the Blagius theorem.

Let a uniform line source be located at z = a, outside a cylinder of any shape, and let
the flow of the fluid be uniform at infinity, with velocity components u = ~ U sin y and

v==Ucos y. Then, il X and Y denote the z and v components of the force on unit length
of tho cylinder, it will be shown that

X==pl'Usiny+2mpAu, , Y =pl'Ucos y+2apAv, [75a, b]

Here I" is the circulation around the cylinder; 224 represents the volume of fluid emitted

per socund per unit length from the line source; and u, , v, are the compcnents of the
partial particle velocity at the location of the source caused by the presence of the cylinder,
in addition to the veolocity that would exist there if the cylinder and all circulation around

it wero removed and replaced by fluid.

To prove this theorem, the contour of integration in Equation [74g] is displaced from
the contour C of the cylinder and transformed into a distant contour S together with a small
contour ¢ surrounding z = a; sce Figure 113 and compare Section 29. The value of the
integral remains unaffected, since no singularities are passed in transforming the contour.
The theorem of residues is then used, as explained in Section 30.

Figure 113 — A lire source at ‘‘a’’ near
a cylinder C

165

. —

PRvS——




The complex potential can be written, from Equations [35al and (40al,
w=~Aln(z-a)+ Uze™'V 4 u,
where w_ is the rartial potential due to the prosence of the cylinder. Then

du du .
dw A “‘.}' c . — <
+ Ue + YUy H IV =
dz z2-a dz dz

from Equation [25i].

On 8, 1 /(2-a) can be expanded by the binomial theorem:

A 1 a a?
- == Al 4 — o o e
2—-Q 2 32 23

Furthermore, dw_/dz will vanish at infinity, so that, on the contour S, » can be expanded
as in Enuation [72d]:

- - )
i 61 b, du il b 25
w,=—1Inz+— + — ......,

m 2z 22 dz 2nz 2 3

All but twe of the resulting terms in the integral around § then give zero.
On o, which is traversed in the negative direction, the residue of [~24/(2-a)}
[du,c/dz] contributes to the integral 474 [du,,__/dz] = 4nid (~u,

e +iv, ), since dw_/dz

o
is analytic at 2=a: see Section 30. The term in AU cancels one obtained from §.

'Thus Equation [7T4g] becomes

X=iY=-plUe™ 4 2mpd (v, -iv,,) [75c)

As was seen in Section 40, 4 is real for a source; hence Equations [75a, b] follow.

If there is a line vortex instead of a source at z = g, with circulation 1} arourd it, by
(40m] 4 = - ¢ Iy/2a: hence

K==-pl'Usiny-plijv, ., ¥ =pl"Ucosy+plu {75d, e]
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If U = 0, a little reflection shows that the force on the cylinder is dirocted more or
less towards the source or vortex.

The torque L an the cylinder per unit of its longth is given by Equation {74h). In
evaluating this integral around o, the factor z in the integrand can be written as (z2-a) + a.

it is found that

! . _ oo [ T4 T? “iy
Lﬂ-;p(ff) dniad(~u, +iv, )+ 2nid —-——--—2-——2610e

Write b, = lbl]e‘ﬁl. Then, for a line source at z = q,
L=pld(2sav,, ~1)-2eU1b,] sin (8, - y)l, (750
or for a line vortex,

L=plalju,, ~2zUlb|sin(8; -~y [75g)

To use these results, U, and v,. Must be known.

If several sources or vortices are present, the values of X, ¥, and L due to all of
them are simply added to obtain the total force and torque, as is easily verified. The
principle of the superposition of flows will not hold, however, since in each formula the
values of u__ and v__ are influenced irdirectly by all sources or vortices. The sources
or vortices may be fictitious, introduced to represent the effect of another cylinder, with
or without circulation around it; in this way it may be possible to culculate the interaction
of two or more cylinders.

(See Reference 2, Section 8.63, 9.53, 13.62; also Section 8.83 for an extension to

dipoles.)

76. KINETIC ENERGY IN TRANSLATIONAL MOTION

By using the same stratagem as in Section T4, some useful formulas can be derived
for the kinetic energy of the fleid surrounding a cylinder that is moving in tcanslation per-
rendicularly to its generators. Let the velocity of the cylinder be U with the fluid at rest
at infinity and with no circulaticn around the cylinder, and first, for simplicity, let it be
moving toward positive . Then the common normral velocity of the surface of the cylinder
and the fluid, at a point where the z direction cosine of the normal to the surface is I, is
q, wherc g, = U, and the kinetic energy of the [luid per unit length of the cylinder is T,

where, from Equation {17d],
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1 1 1
I, = ?P‘f¢qnd3"?PU§¢ld3”'é‘ pUdg dady,

since ! ds = dy. Hero p is the density of the fluid and the integration is o be oxtended
around the surface of the cylinder.
Now, if

w=¢ +iyYand 2 = 2+ 1y,

then
$dy = (I) (wdz) ~ ¥ dz,

where the symbol (/) signifies that only the imaginary part of what follows is i~ be taken,
and without including the factor ¢; thus

IV (wdz) = (1) (¢ + i¢) (dz + idy)l = ¢ dy + ¢ dz.

Also, between two points on the surface ds apart, ¢ differs by dy; where dy = - ¢, ds =- lUds
=~ U dy; whence, after integrating, ¢ = — Uy + C on the surface, where C is a constant,
Substituting,

T, = % pULUI") ($ wda) - US) [76a)

where § stands for - § ydz and represeats the cross-sectior  ares of the cylinder. Here C
has disappeared because ¢ C dz = C ¢ dz = 0.

Thiz result may now be generalized so as to allow the cylinder to be moving at speed
U in a direction inclined at an angle y to the positive z-axis. Both the cylinder and the flow
are rotated through an angle y about the origin if z is replaced by ze”'Y, as explained in
Secgtons 25 and 34. Thus Equation {76a) is replaced by

T, = -;- pUT(I’) (F we™Y dz) - US), [76b)

since the rotation does not alter S,

Another useful form for 7, may be obtained by displacing the contour of integration
toward infinity, which does not alter the value of tae integral; see Section 29. Then w can
be expanded as in Equation [72d], but here the last two terms of that expansion vanish, so
that
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bl b2

W=ap+—— % — ouiiis {76¢c)
- F/ 2
z

Also,

In the integral, all terms give zero except that § 6, dz/z = &nib ; see Se *wv. i,
(I @b, ey = (R) [, e~} where (R) indicates as in Section 74 that unly the real part of

what follows is to be taken. ‘lence

1 b, ety
T, = 7P U%s,. 8, =21 (R) 5 -5, [76d o)

or, if the cylinder is moving toward positive z,

(R) o,

§;,=8r —— -8 (78f]
1 4 U 0

Finally, ist the shape of the cylinder b2 changed by means of a transformation which
is single valued and regular outside of the cylinder and which leaves the plane of 2z unctisged
at infinity. Toward infinity such a teansformation from 2 to a new variable 2“ can be writcen

b, b
2=2"+ —_—. (76g]
2’ 3'2

If this series is substituted for z in Equation |76¢] as it stands, however, the boundary
condition on the flow may no longer be satisfied at the surface of the cylinder. To avoid
this difficulty, let the moving cylinder first be brought to rest by superposing uniform motion
in the opposite direction; then, from Equation {35a}, w becomes, in place of Equation [76c],

by

= UemY L=V g 2
w,=Ue"Yzra,+ — e Ue™z’vay+ (Uble™Y + b)) praRRRRTEE

The boundary condition on the cylinder is now, on the z-plane, ¢ = constant, and this con-
dition remains satisfied on the z” plane. Removal of the term U e~*Y 2’ then so’s the cylinder
moving again, at speed U in a direction inclined at the angle y to the positive real axis of
2% the corresponding flow is represented by

1

w=ay+(V bi'e"y + b)) AR CRERER

{76h]

e U - B

et o ovms v — o
R

SR




e b

Equation [7Ge] for the entrained area §"then gives

[ b e~y
§7=2a (R) (b7 + — )- s [76i]

e

where §’is the cross-sectionsl area of the transformed cylinder.

(Sce Reference 74, where a proof not employing complex variables is given by Leathem.)

AIRFOILS
77. THE JOUKGWSKI TRANSFORMATION

By making a transformation from z to a new varieble z°, the flow with circulation around
a circular cylinder can be transformed into the flow around a cylinder of a different shape.
The equipotential curves and streamlines on the z-plane transform into curves on the z2”-plane
in association with the same values of ¢ and y. Since the total change in ¢ on going around
a closed curve thus remains unaltered, the circulation around the transformed cylinder i« the
same as that around the original circulsr cylinder.

It was shown by Joukowski that a first step toward obtaining in this way useful p-»-
files for sirfoils could be taken by using the simple transformation

c2
2'=z+ — , (72}
z

where ¢ is a real positive constant, 2= 2+ iy’ , 2 = ¢ + iy.

If ¢ is chosen equal to the radius a of the given cylinder, 2’ becomes simply the complex
potential w for the flow past the circular cylinder itself, as obtained in Section 69. Assume,
therefore, that ¢ < a.

The transformation Equation [77a] has a singularity at z = 0. Furthermore, since

dz’ c? 1
-&;-:1_-;5-:;@4-0)(2-0), [77h]

the transformation is not conformal at either of the points z =% ¢, or 2°= £ 2¢, where

dz’/dz = C. In fact, as z passes through either of these points aiong a smooth curve, since
dz’/dz changes sign, the motion of z’reverses, so that the corresponding 2’ curve exhibits a
cusp.
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U ¢t the initial circulsr cylinder be so placed on the z-plane that neither of the points
2 = % clies outside of it. If one of them lios on the cylinder, an infinite velocity will occur
at the corresponding point in the transformed (low unless the original point on the initial
cylinder was a stagnation point. For dw/dz’= (dw/dz)/(dz?/dz), so that, at 2 =L ¢,
dw/dz ‘» e unless diw/dz » 0. Tho singular point z = 0 lies inside the cylinder and can be
disregarded.

To study the general character of the transformation, let 2” and z both be represented
for the moment on the same plane, with coincident axes. At infinity z°= 2, so tkat the flow
is unaltered. The transformation gives to every {inite point represented by z = re'? the dis-
placement ¢*/2 = (02/,)6—1'0; the magnitude of this dispiacement 1s inversely proportional o
r and its dicection lies at the same angle below the z-axis as does the vector rerresenting
z above if; see Figure 114. Thus all points not on the z-axis are moved toward this axis, end
all points not on the y-axis are moved wway from this axis, provided r > ¢. oints on the
z-axis are merely shifted along it, and similarly for the y-axis.

y

Figure 114 — The Joukowski transformation,

4 . 2
2'=2 4+ c“/z.

Points lying on the circle |2| = ¢ are brought on to the segment of the z-axis between
2’ =% 2¢. Other circles transform into curves whose shapes vary widely. A circle centero
on the z-axis is transformed into a curve that is symmetric with respect to the z%axis. If the
center of the circle is not on either axis, the transformed curve is asymmetric.

The part of the z-plane that lies outside ths citcle |z| = ¢ is thus mapped onto the
entire z-plane, conformally except at z = ¢. The transformation can be visualized by
imagining the circle {2| = ¢ to be both flattened vertically and drawn out horizontally until
it becomes a segment of the real axis of length 4¢, accompanied by a cot~esponding distortion
of all parts of the plane. Circles centered at the origin become converts.: 1. ¢ confocal
ellipses, while the radial lines outside the c-circle become joined at the ends w form hyper-
bolus confocal with the ellipses; see Section 81. The interior of the ¢-circle is likewise
mapped onto the entire z”-plane, as if it were turned inside out and also reflected in the real
axis while the origin recedes to infinity.
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The transformed cylinder. Let the center of the circie of radius a, which represents a
circular cylinder, be located on the z-plane at the point

z2=3 =~ hen (77¢}

where A and 5 ore real positivé constants, or at the point (A cos 5, A sin 3); and let the fluid
at infinity have a veiocity U inclined at an angle y to the negative z-axis, with components
~U cos y, -U sin y; see Figurs 115, Then, from Equation {68]], the complex potential is

. X 2 . T —-hen
w= l—(z—be”l) v, 2 e‘)'] o 2208 [77d]
a

L. z2=-hell 2n

By substitution for z frem Equat.on [i7a], w can be found, if necessary, as a function of 2*

e 2

Figure 115 — Diagram for Equation {77d].

h& z
NS

The lift on either cylinder is given by the Kutta-Joukowski foriaula [73a]. A simple
formula for the torque on the transformed cylinder can be obtained from the Blasius theorem.
For this purpose, dw/dz’must be expanded in descending powers of 2/, as in Equation [74]j],

but terms in higher negative powers than 1/2°2 are not needed here. From Equations [77d}
and (77h]

’ 2\ ~1 2 7
du dofdst (& per- 22w 2] o
dz* daf dz 2 2 ]
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Solving Fquation [77a] as a quadratic in z and expanding the radical,

2" 9 22 2’ 3
2 4 -1 2
1 1 [ c c :l 1 ¢
—= = 1= — + = — + + .
2 2" | 2'2 3'4 2 213
by the seties, (1--x)'l =1l Tt eenennne ; hence
. R PL 1 ke
(z=heM™ = — 4 =— 4 Faenes )
32 2 2'2
-
X 1 1 c? c? c?
(z-he"’)’2=—-+....=--—-+....;/1——— =14 —4.i0e=ls — ...
22 2’2 \ 22 22 2’2

Hence, as far as terms of order 1/2°%,

dw ; ir 1 ir . . .
e [—2— et 4 U (c? e - a? e'y)]

- 2 seee

2
Thus the constant b, in Equation {T4j} with z replaced by 2" here has the value
.r

k3 . - .
by == == hell- U (P - a? ), (771
in

and, upon substituting i. Equation [74m] and selecting the real part as indicated by the
symbol (R), the torqu~ per unit length on the cylinder about an axis passing through the
origin of coordinates i {ound to be

N=~2rpc?U?sin2y+phl"Ucos (5 -y). [77¢)

(See Reference 2, Section 7.50, wheve the sign of y is reversed; Reference 4.)
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78. CIRCULAR ARCS BY THE JOUKOWSKI TRANSFORMATION

Lot the initial circle representing a circular cylinder be centered now on the y-axis st
(0, ), and lot it have such a radius a as to pass through the points z = £ ¢, as in Figure 1.0,
Then it transferms into a circular arc with ends at the points 2” = £ 2¢, which may represent
a lamina of arcuate cross section.

3 y = y

——,
:Zf.‘l

A\

Figure 116 — The z-circle goes into an arc on the 2 plane. See Section 78.
For, each of the foilowing two equations is equivalent to Equation [77a)

(2°~22) z=(2~c)?, (2°+2c) 2= (2 + ).

Division of these equations gives

2’ -2¢c z2-c¢\?
_ = . (78a]
z2’+ %¢ 2+ ¢
Write
i i i’ i0,;
z-c=r1¢ 1,z+c=r2e 2 z'~2c=re 1 2’+2c=r)e 2

The angles thus irtroduced are illustrated in Figure 116. Then, equating complex amplitudes
on both sides of Equation [78a],

0/~ 6,=2(0, - 6,). {78b]
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Now, it is clear from Equation [78a] that the points 2 = ? ¢ correspond to 3= % 2¢,
As 3, starting from 2 = ¢, traverses the initial circle positively up to 2z = - ¢, 4, - 6, retains
a constant value, for a geometrical reason; hence by Equation [78b] 0~ 6, likewise remasns
constant, and z; therefore, traces a circular arc extending from 2”= 2c to 2” = ~2¢. As z con-
tinues past z = - ¢, 0, changes by , and 6,"~ 6, by 2n; this is easily seen to be equivalent
to no change at all in ¢,"~ 0., so that 2" must now retrace the arc, arriving back at 2°= 2¢
as z comes to c.

The const.nt value of §, ~ 0, along the upper part of the circle can be written

-8B [(73c]

<>

!
>
o3

%
o] 2

where the significance of § is shown in Figure 116a, and

c=acos B, h=asin 8 =ctan B. [78d, e]

The angle between the tangent and the chord at each end of the arc on the z*plane is

m ~ (6~ 6,) or 2 B; thus the arc has a total angular length of 48. Its radius R, and its
camber C, or the ratio of its maximum height above the chord to the length of the chord, are,
from the geometry of Figure 116a and Equation [78d, e],

2¢ a? E (1l -cos?2 1
= -~ = — ,C= ( - A) = — tan 8. [78f, g]
sin 28 a2 - o2 2R sin 28 2

The interior and the exterior of the circle are each mapped orto the entire 2z -plane;
the mapping of the interior is to be ignored here.

For an application, it will be convenient to assume the fluid to approach at infinity
from a dizection inclined at an angle ¢ below the positive 2- or 2"axis, with components of
velocity --U cos a, + U sina. Since the flow at infinity remains unaltered, the angle of
approach is the same in the transformed as in the original flcv. Then, in Equation [77d] for
the complex potential w, y = - a; and here g = /2, ¢'7 =i, Thus

r 2 ; ;
w=U| (z-ik)e'® + —a—_ e~ |, £ n 2 A . (78h]
z2-1th P a

Substitution for z in terms of z’from Equation [77a} then yields w as a function of
2’y and from w = ¢ + iy, 2" = "+ iy’, the potential $ and stream function ¢ can be found;
but the equations are complicated. The flow net is most easily constructed by diract
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graphical transformation of that for the cylinder; a sufficient number of points on the curves
can be transferred into their new positions by the method described in Section 77 and illus-
trated in Figure 114.

From Equations [78h)] and [77a)

dv  dw /dz’ 2 . 2 . ir .
-+ = l = ._w _z. = 2 ) elﬂ - ¢ el + _.L.— [781]
dz’ dz ds 32—02 (8—?:]1)2 2”(3-‘5’1)

from which the comporents of velocity u* and »”in the transformed flow can be found.

On the arc itself, since the corresponding z-point lies on the initial circle, z is rep-
resented by z = th + ac'® where ¢ is a variable angle, shown in Figure 116. Hence

. a? . , . . s ir r ;
e e~ia i€ (el(a+¢)_e-l(a+e))=2ie-te sm(a+e), =3 e-xe’
(a~ih)2 2 (2-1iR) 2na

and, since 22 ~ ¢? = (3 + ¢) (2 - c) and Jie™*¢| = 1,
dw r? r
g=|~—1= 2U sin (a+e)+ {78j]
dz’ o Te 2na

Here r=|2|, r, = |2 ~ ¢|, r, = |2 + ¢|; and these quantities represent distances that can be
measured on a plot. Tk~ point on the arc at which ¢ as calculated from Equation [78j] is the
velocity can be found by graphical transfer of the corresponding point on the circle.

Streamlines for 8 = 11 deg, & = 25 deg and I" = 0 are shown in Figure 117; the diagram
has been tipped up to save space. Another case of streamlines about a flattish arc is shown
in Figure 118; see Reference 114. About a semicircular arc, streamlines for three cases of
non-circulatory flow are shown in Figure 119; see Reference 113.

Figure 117 — Streamlines past a circular

arc without circulation. V
dt——
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Figure 118 — S..eamlines past a circular arc
with no circuiation about it.
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Figure 119 — Noncirculatory streamlines about a semicircular arc.
(Copied from Reference 113)

The lift per unit length on the lamina, in the direction perpendicular to the direction of
the ateady stream at infinity, is in any case L = pI"U, by the Kutta-Joukowski theorem. The
torque about the origin of coordinates or the centur of the chord, from Equation [77g], in which
here y ~ ~a, n = 90 deg, & = ¢ tan B, is, in any case,

N=2apc?2U?sin2a-peclU ten Bsina [78Kk)

Here p is the density of the fluid.

The lift and torquo will be the same if the lamina is itself moving through fluid which
is at rest at infinity; the lift is then perpendicular to the direction of motion of the lamina,
and o is the angle between the direction of motion and the chord of the lamina, as shown in

Figure 120.

180

- ——




«

Figure 120 — Symbol relations for oblique x
motion of a circular-arc lamina. P 28 Z,T\ .
a
v

> . .
At the edges of the lam...n, where z = £ ¢, ¢+ o, in genernl. The velocity can be made

finite at one edge, however, by choosing the ratio I'/U so that the bracket in Equation [78i]
vanishes at that edge. Then du/dz = G there and the corresponding point on the initial
cylinder is a stagnation point. In particular, let

2 o1~
U [eid o 0 gmia)_ __‘_l___, [781]
(- c~ih)? 2n(~c~ih)

or, since by Equation {78d,e]
c+ih=a(cos R +isinR)= ac'B, [78m]
F=4malsin( ¢+ ) [78n]

Then, eliminating I" between Equations [78i] and [7#1] and at the very end using
Equation [78m],

, 2
G U e % s B))
dz* (z2-c)(2-th) 2-th

Thus dw/dz’ and ¢ are now finite at 2z =~ ¢, although still infinite at 2 = ¢. Furthermore, both
dw/dz"and 2’ are continuous functions of z at z = - ¢, so that no discontinuity of the velocity
can occur there; the fluid flows smoothly away from the trailing edge along the tangent.

With this value of I', Equation [78j] becomes

2,20

r
rc -

q= [sin (a+¢€) + sin (a+ B)]. [780]
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and the lift is

L=plU=4rpal?sin(a+p), [78p]

whore @ = ¢/cos 8. The lift in this case is directed awzay from the convex side of the lamina
rrovided « > - B, and it is a maximum for a = 90 deg - 8.

The flow net around such an arc-shaped lumina, with the circulation adjusted to make
the velocity finite at the trailing edge, is shown in Figure 121. The stream approaches from
the left at an angle of 10 deg to the chord. Because of the presence of circulation, the
apparent directions of approach and departure differ in the figure by a few degrees. The
theoretical pressure-differences on both surfaces of the lamina are plotted in Figure 122,
drawn vertically from the arc as a base; the numbers represent millimeters of water in an

airstream of 10 meters per second. The broken line represents old measurements by Eiffel.

T 0,60 -0.2700.20.00.610. 8, L.0N.2 1 41.6:1.82.02.2
Mg M TS

A
' ) 14-3‘—"-—'

- Y P g IS
*\/‘:; L‘/\/‘/K/ ‘,,\/%"-Ix.s-o.A-o.z-,_‘.,-a—'k—",’

Figure 121 — Flow with finite trailing velocity around an arc-shaped lamina.

The kinetic energy of the fluid when the lamina moves in translation is easily found.
Let it move at velocity U at the angle a with the direction of its chord, with no circulation
around it, and with the fluid at rest at infinity. From E-~uation [78h], in which the term in
e'® represents the uniform stream and is to be dropped. the appropriate potential is

AU ;. Ut ihad®U
G o= — € = + €
z-ih 2 22

~ia

with @ measured downward from the positive ren® axis. The transformation Equation {772]
can be written in descending powers of 2”as
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c? 2
272 = — =22 = ==t ictrssnes
2

Comparison of these equations with Equations
{76d] and [76h) shows that here by a* Ue“"’, -15

b/« - c%; also, here y = —a . Hence from

Equstion [76e, i], in which 8’ = 0, the kinetic 5

energy of the fluid per unit length of the -0 _._J\

lamina is i)

1 Y

T, =-§-pS1'Uz=npU2(az-02 cos 2a), [78q] j S
-3 \
=2

since (R)e?'® = cos 2a. A more useful form '5

is obtained by writing b for 2¢, the half-chord +;

of the lamina, and introducing its central :3 A= ‘

height d above the chord. Using Equations :; 7//

[78g) and [78d], @2 = €2 (4c)? = b? tan® B
= b2 (a®/c? - 1), whence a2 =(b2+ d%)/4.
Thus

Figure 122 — Pressure differences above and
berow the lamina shown in Figure 121.

1
Tl = -2— prr02 <b2 Sillza + —é—) . [78!‘]
(See Reference 1, Article 70.)

/9. THE JOUKOWSXI AIRFOILS

By disj | icing the initial circle so that it passes through only one of the points
= % ¢ and surrounds the other, the Joukowski transformation can be made *o yivld a contour

that is pointed at one end and rounded at the other. If the circulation is :hn chosen so as to
make the velocity finite at the pointed end, it is finite al! round. According to a hypothesis
rroposed by Joukoweki, a properly designed airfoil automatically develops in the fluid around
it, by means of friction, a circulation of such magnitude as {o remove the tendency for the
velocity to become infinite at the trailing edge, which is usually made comparatively sharp,
and measurements have shown this hypothesis to ue clese to the truth.

The general Joukcwski iransformation is most easily handled by a graphical method.
It is desired to construct points representing 2z’ where
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(79a]
and cisreal. If z = reio
2 2

¢
— D —— e
2 r

~i9
Thus the point representing the complex number ¢2/2z lies on a line inclined at the angle 0
below the z-axis, and at a distance ¢2/r from the origin. The vectors representing ¢2/z and
z are easily constructed and can ihen be added vectorialiy to obtain 2.

For values of z representing points on the initial circle, the operation can be simpli-
fied by first constructing the locus on which ¢2/z must lie. Let the center C of the initial
circle, whose radius is ¢, be displaced a distance 4 from the origin in a direction making an

angle n with the positive 2-axis, as illustrated in Figure 123. Then, when z lies on the circle,

(r cos 0 - k cos n)? + (r sin 6 - A sin y)? = @2,

r? = 2 kr (cos 0 cos g + sin A sin ) + A2~ a® = (.

Y
.
/\%
&,
N
c L ° Figure 123 — Illustrating relations for a general
. Joukowski transformation.
9 z
-8 7 ¢
L5
]
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Multiplying through by ~¢*/[r? (a® - A?)):

2 2 2 4
h ¢ . . c
(-c—> + 2 2 — (cos @ cos n + sin 0 sin g) -, = 0,

r a2-p2 T a2 -2
This can be written
2 2 2 2
c , c . .o 22
(—cosO+h COSq) +(-—sm0-—h smn) =a’*, {79b)
r r
2 2
A c‘a
A= y 8 —— [79¢,d]
a? - A2 a2 - A2

Now c2 cos 0/r, - c? sin @/r are the coordinates of the point c2/z. Hence, Equation [79b)

shows that ¢2/2z lies on a circle of radius o’ drawn about the point €’ or (~A”cos 5, A’ sin 7)

as center. Clearly OC’and OC are equally inclined to the y-axis but on opposite sides of it.
If, in particular, the initial circle passes through the point z =~ cor B, C'lies on

the radius BC. For, the slopes of BC and BC’ are, respectively.

h sin g h’sin g c2hsing
c+hcosqg c-h'cosn

c(a? - k%)~ c?hcos g

from Equation [79¢c]. But, from the triangle BOC,
a® -k =c?+2chcos .

Hence the second slope equals the first. Since the point z = - ¢ or B is itself on the locus
circle, the two circles touch at B.

According to the results of Section 78, a circle centered at C, the intersection of the
radius BC with the y-axis, would transform into a circular arc of tctil angular iength 48,
where 3 is the angle between the radius BC and the 2-axis. This arc, with ends at
2’ =% 2¢, iies inside the transformed contour as a sort of skeleton.

The construction of an airfoil contour in this manner is shown in Figure 124 for

h=0.87c, B = 34°40". The skeleton «rc is also drawn. The graphical procedure is
discussed further by Ruden.”®
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Figure 124 — Illustrating the construction of an airfoil contour
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If B =0, so that the initial circle is centered on the z-axis, the skeleton arc becomes

a straight line and the contour obtained from the circle is symmetrical ahout the

z’-axis. Its
shape depends on e ratio a/c.

If 3 £ 0, the contour is asymmetric.,

For the flow in the surrounding fluid, nothing needs to be changed in the discussion of
the last scction except that here the velocity can be infinite only ut the sharp edge or at

2= - ¢, and %A is to be replaced by A cos n + ik sin g = Ae', as ir. Section 77. With the

latter change, Equations {78i] and {78j] for u’, »” und ¢, which are expressed in terms of
quantities on the z-plane, hold as before.

IfT =47alUsin (a+ B), the velocity is again finite everywhere. Here U is the
relative veiocity of the airfoil and the fluid at infinity and « i3 the angle of attack, or the
angle between the direction of approach of the fluid and the chord of the skeleton arc, taken

rositive when the approach is from the concave or less convex side. With this valwe of I,
the lift per unit length is again

L=4rpal?sin(a+B) {79¢]

where p is the density of the fluid.

In any case L = pI" U, provided the motion is steady, as for any cylinder

The torque about the origin of coordinates on the 2z’ plane is, from Equation [77g],
in which here y = - a,
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N=2apc®U%sin2a + pAT U cos (g +a). [79f]

Flow without circulation past a Joukowski airfoil of a certain shape is shown in
Figure 125. For another profile, there is shown in Figure 126 first, the flow without circula-
tion, then the flow due to the circulation alone, and finally the resultant flow due to the super-

position of the two; the circulation has bheen chosen so as to make the resultant velocity finite
at the trailing edge.

The trailing edge can be rounded off by allowing the initial circle to enclose both of
the singular peints (£ ¢, 0). A Joukowski profile constructed by R.H. Smith25! with g = 0,
a/c = 1.35, A/c = 0.135 is shown by the heavy curve with two rounded ends in Figure 127,
Streamlines for .} flow without circulation past thus contour are shown 1n Figure 128.

The extended contour with a pointed end in Figure 127 represents the profiie of U.S.
Navy strut No. 2. It can be reproduced without visible error, using the method of Section 56,
by assuming 5 line sources and 8 line sinks of suitable strength properly disposed along the
axis. Figure 127 shows also the calculated distributions of pressure over both theoretical
profiles in comparison with the observed distribution over strut No. 2 in an air stream; the
flow is from right to left.

(See Reference 1, Article 70; Reference 2, Sections 7.20, 7.30, 7.31, 7.32, 7.40,

o b i < e i e o

7.50.)

Figure 125 — Flow without circvlation past a Joukowski airfoil. A ana B
indicate s.»gnation lines.
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Figure 126 — Streamlines past another Joukowski airfoil:
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Figure 126¢

(a) with no circulation,

(b) with circulation only, (c) with circulation adjusted to eliminate cross flow

e e o e A e =T

at the trailing edge.
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o — Joukowski
o— —Soutces and Sinks
x— Expenmental

Figure 127 —~ Profile of U.S. Navy Strut
No. 2 (pointed) and closely similar

9,50

~o

)

Joukowski profile (roundedj, with
theoretical and experimental
pressure distributions. See

the end of Sec. 79.

Figure 128 ~ Flow without circulation past
a similar profile with rounded ends.

80. IMPROVED AIRFOILS

Rlasius®?, Tiercy, Piper and Preston®!, Pipcrsz, and Duringtop and Dobbie®3, More

sentable by a Laurent series of the form mentioned in Section 76 or

2 =24 = o e F e e s
2 22

The use of transformations so defined was studied by von Mises84 and by Muller83,
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A modification of the Joukowski transformation by which the sides of the airfoil may
be made to form a trailing edge containing a finite angle instead of a cusp is furnished by the
circuiar-arc transformation, which will be treated in Section 88. There is no simple graphical
construction for this transformation. It was studied by von Karman and Trefftz77, Maller?8,
and Glauert!8*, and was generalized further by Betz and Keune’?, who adced a dipole term.

Other cicsed transformations for the construciicn of airfoil conlours were discussed by

generally, any ordinary closed curve can be transformed into a circle by & suitable trans-

formation, in order to make the two planes agree at infinity, the transformation must be repre-
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Simple methods for the treatment of thin airfoils were described by Jeffroys8S,
Munk87, Glauert®s 8%, and Millikan®®, who also considered biplanes.

Later work has been concerned chiefly with practical methods of making calculations
for given profiles ~f any shape. See especially papers by Theodorsen and Garrick®?, and by
Gebelein?*, also Theorsen??, Schmieden?3, Garrick®4, Kaplan®5. Line sources on the
axis of the airfoil are used by I'istolesi®® and by Goldstein®?, both sources and vortices by
Keune?8. Jones and Cohen?? show how to use the Joukowski transformation itself in order
{n efloct small changes in a given profile.

Approximate methods for double or biplane airfoils have been discussed by Millikan®?
*ad, with use of elliptic functions, by Garrick!©9,

The theoretical literature on airfoils is naturally extensive, but most of it either makes
livile use of potential theory or deals with systems of vortices and so lies outside of the
sco] ¢ of the present discussion,

VARIOUS CYLINDERS
81. CIRCLES INTO ELLIPSES

The transformation of Section 77,

z2=2"4 — [81a]

can be used to convert a circular cylinder into one of elliptic cross section.

For, consider a circle on the z’“plane centered at the origin, which can be described
in terms of polar coordinates r, 9 as follows:
i0

, z’l

2”=z+iy’’=re =rcos @, y' = rsin 6, {81b, c,d]

where r is constant. For the corresponding transformed curve on the z-plane, from Equation
(81al,

. c2 ,
z=z+iy=re'0+ — ¢i0, {8le]
r
2 2
c (4 .
z= <r+ -—) cos 0, v = (r-—) sin 6. [81f, g}
r r
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The equation of the transformed curve can also be written

y? ¢
b2 r

, (81h,i, ]

+

) lt-a
N ™~

which shows that the given z’~circle becomes an ellipse on the z-plano having semiaxes a,
b. Its foci are located at y =0 and z =%/ a® - 2 = % 2¢.
Similarly, a radius from the origin of 2/, on which ¢ is constant, hecomes a curve on

which, from Equation [81f, g]

1 22 2
i y T _ ¥ _z=¢ hd -y =1. (81K

+ — = 2r, -
cos @ sin @ cos ¢ sin @ r 402 cos? 0 4¢2sin? 0

This represents a hyperbola having semiaxes 2 ¢ cos 6, 2 ¢ sin 6, and foci likewise at
(¥ 2¢, 0). Since the transformation is conformal, the hyperbolas and ellipses are orthogonal,
as were the original circles and radii.

Toward infinity, z+» 2’ and the two planes become alike. The ellipses then reduce
to circles like those on the z’*plane, and the hyperbolas approach their asymptotes, which
have the directions of the criginal 2’/ radii.

In working with these curves, it is convenient to change somewhat the variables that

characterize them. Let a new complex variable { be defined by

2”=ceS, (= &+ in. (811, m]
Since {=1n (2’/c) and 2’ = retd,
E=1In(r/c), = 0. (81n, 0]

Substitution in Equation [81a] then gives
z=2ccosh { {81p]

This latter transformation will be studied in the next section.

Each of the ellipses previously described now corresponds to a certain numerical
value of & There are two different circles on the z’~planc corresponding to each ellipse,
however, one lying inside of the circle r = ¢ and the other outside of it; their radii Tys T ATE
such that r, r, = ¢2, since in Equation [81i,j] two such values of r give the same a and b,
and Equation {81n] shows that for the larger circle £ > 0 while for the smaller £ < 0. Each

hyperbola corresponds to 5 = 5, % 2 nn where 7, is a real number and n is an integer or zero.
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Theo inverse transformation to Equation [81a] is

Il‘_

n
1
to|»-‘

[22 (2% -4 02)%]; [81q]

the plus sign goes with r>c¢ or £> 6, and the negative with r<cor £<4, as is easily verified for

2]
positive real z; for a real 2<~ 2 ¢, however, the symbcl (22 - 4 ¢2)” must be understood to stand
for the negative square root.,

(See Reference 2, Section 6.30, where ¢ is replaced by ¢/2, also Section 6.32.)

82. ELLIPTIC COORDINATES
Let
z=z+iy=ccosh {, {=E+1in. [82a, b]

This transformation was studied briefly in a different notation in Section 61, and the results
obtained there will be assumed. From Equations [61b,c, g, h,i,j]

z = ¢ cosh £ cos 5, y = ¢ sinh £ sin y, [82c,d]
1
cosh €= o fi(z + )% + y2]% +[(z-0)?+ y2]%!, [626])
c
1 %
cos g = e z+ )2+ 9% -[(z-0)%+ yzl%i, [82f]
2 2 2 2
GANNEN: SREEPES I AN — . L)
e? cosh? £ ¢? sinh? ¢ e?cos?y c?sin?yg

If £is held constant while  is given all possible values, an ellipse is obtained on
the z-piane, with semimajor and semiminor axes

a’= ccosh & b’=c [sinh 4. (82i,j]

The same ellipse is obtained for = - £, as for = £,. 1f n is held constant while £ ranges
from - to o, a hyperbola is obtained with semiaxes

a’” = c|cos g}, b = ¢ |sin 5]. [82k, 1]

All ellipses and hyperbolas have common foci at (£ ¢, 0), and

Y
a2~ b%2=0c% a2 4 72 = (2, [(82m, n]
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See Figure 129, on which possible values of £ and 5 are indicated in terms of =,’30 as a unit.
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Figure 129 — Illustrating elliptic coordinates. See Section 82.

The ellipse fer £ = 0 reduces to the segment of the z-2xis between ¢, on whick
¢ = ¢ cos 7. The remainder of the z-axis can be regarded as a hyperbola on which sin n=0
while cos n =1 for 2> ¢ or cos y = ~1 for 2 < —¢, and on which 2z = * ¢ cosh ¢

The variables ¢, 7 can obviously be used as coordinates on the z-plane; they are
called elliptic cocrdinates. They have the disadvantage of being doubly many-valued. Not
only is 7 many-valued like an angle, with a period of 2, but the values - ¢, ~y define the
same point (2, y) as do &, 5. If both £ and 5 are required to vary continuously with z and y,
¢ must change sign in crossing the z-axis between z = % ¢, since there |cos »] < 1 and
sin n # 0, whereas in crossing at || > ¢, |£] > 0 and sin » must change sign with y. Hence
it is easily seen that £ does not change sign but 5 changes by * 27 in going once around
both of the points (X ¢, 0); whereas, if oniy one of these points is encircled, upon returning
to the starting- point, 5 has returned ia its initial value but £ has changed sign. In appli-
cations it 1s usually coiivenient to suppress at least the ambiquity as to & The two most
useful alternative conventions are the following,
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(8) Keep £32 0. Thon from Equation {82¢c,d] it is easily seen that, as the z-axis is crossed
botwoen the points = % ¢, sin n must change sign discontinuously without change of cos ;
n itzelf may change discontinuously to ~y, or to 2rn —5 where n is an integer, positive or
neg-~tive. Elsewhere n may vary continuously: in this case . will differ on the two halves of
oach hyperbola and is many valued; in going once around both of the points (* ¢,0) in the
same direction, 5, like a polar angle, changes by £ 2q.
A possible choice toc make n single valued is the range —m<pga. Then 5 changes

sign discontinuously in crossing the w-axis wherever [2| < ¢. Values of ¢ and 5 according
to this convention are indicated in Figurs 130a.

(b} As an alternative, £ may be given everywhere the same sign as y. Then £ will have
opposite signs on the two halves of each ellipse and will change cign discontinuously at
the z-axis whero |2} > ¢, whereas n may be made to vary coatinuously and will then have a
fixed value on each hyperbola. A possible range is 0 < n <. This latter convention is
illusitrated in Figure 130b, and in more detail in Figure 129.

n any case, if dp = 0, dz = ¢ sinh { cos nd ¢ and dy = 2 cosh £sinnd&;if dé=0,
dz = — ¢ cosh £ sin ndn and dy = 7~ sinh £ cos ndy.

i\\t-’
=)
g

Figure 130a

Figure 130b

Figure 130 — Sy.nbolism for flow parallel to major axis past an elliptic cylinder.

Hence the slope angles of the £ and 5 coordinate directions are

d de
0¢= tan™? (—1> =tan~! (coth £tan z); 0_=tan™! (-—5/-) = ~tan™} (tanh £coty). [820,p]
d&'o dl” =0 n dz dfﬂ 0
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Also, the eloments of distance in the coordinate directions, calculated ss ds = (d2° + dy?)
with either dy = 0 or d¢ = C,

dsg = cGdé, ds, = cGdn, {82q,r]

1 %
@ = (sinh? £ + sin? 71)% = [—2- (cosh 2 £ ~ cos 2 q)] . [82s]

by hyperbolic formulas in Section 32. Hence the compcnents of velocity ¢ . and . in the
coordinate directions are, from Equation [6f], in which ¢ denotes the velocity potential,

1 9¢ 1 9d¢
e — — m—— —, {82¢, u]
167756 36" ™77 o6 o ’
In applying these results it may be more convenient to substitute, in place of &, the

semiaxes a, b, of the corresponding ellipse, always taken positive. Then, if always £ 0,
from Equations [82¢,d] and {82i,j]

z=a’cosy,y=20"siny, £=In[(a’+ b%)/c] (82v, w,x]

For any point (2, y), the value of a”can be found by adding distances from the foci and
dividing by 2; then

b =(a’? -~ 02)“’ tannp=a"y/b’z.

The components of velocity, ¢, along the tangent to the ellipse in the direction of
increasing 75, and 1, along the outward normal, are then, from Equations (82t, u] and [82]]

1 99 1 9¢
9,,=9§=-———, 9,-9,,=-;:3n-

’ ’ : \% ’
Y , b= (5% + 2 sin? p) (82y, z,a’]

The components g, and g, make angles ¢,, 6, with the z-axis where, from Equation [820. p],

Y ~ (Y ’ o,
On-.-.of:t,an (? tan 1)) ,0,:077 == tan (a' COL:]) . [826,0 ]

Geometrically, the transformation from z to { maps the entire z-plane contintously onto

the positive half, and again onithe negative half of a strip on the {-plane parallel to the {-axis
and extending from 5 = 0 to # = 3n, as may be verified by consideraticn of the displacements

on the {-plane that are required to reach all parts of the z-plane. Thu mapping is then repeated
in this manner upon each successive parallel strip of width 2.
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If convention (a) is adopted for the values of £ and 5, with £ 0 and —r <y g, the ring
botween two ellipses, or the interior of any ellipse, is mapped outo a re~*ingle with sides at
7 =¥ 7 and with ends at the proper values of £ The ring may be suppssed to be cut along
the nogative z-axis and straightenec out. Using conventioz (b), the area between two hyper-
bolas is mapped onto an infinite strip paralle! ic che &-axia.

(See Reference 1, Article 71; Reference 1, Sectior 6.32.)

83. FLOW PAST AN ELLIPTIC CYLINDER

By means of the transformation discussed in Section 81, 0r 2= 2"+ c%/2%’, the flow
around a stationary circuiar cylinder can bo transformed into thau around an elliptic cyiinder.
The appropriate complex potential « can be abtained by replacing z - z, by 2’ in Equation
[69]] and then substituting for z”"in terms of 2. The result will be written down in a modi-
fied notation and verified. It is

w = U(a+b) cosh ({-§;~ia) + £ (5= &) {83a]
on
z=g+iy=ccosh {{=E+in, €30, {83b, c]

where a and b are positive real constants, a and U are real constants,

and
b b
c=ya?-b2>0, e£°= are. 2z (83d, e}
c a-b
or
. o a
sinh {; = — , cosh £, = — (83f, gl
c c

Here £, n are the elliptic cocrdinates of Section 82.
Writing cosh ¢ = (e{+ e ‘:)/2, it is found that

2¢ 1 c? ¢
e-[._T(___- 1—-—-):-': .....
2 9 2 22 2z
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by use of the binomial expansion; hence, using also In (1 + 2) = z - 2%2/2 ...

., writing
1 -¢ ~ia ~{+ &+
cosh (£~ & —ia) = — (e4 S0 +e Créptia

), using Equation (83a,d, e], keepiag only
the first power of 1/z,

2z c? 2z c?
{=In|— 1-—....) =lp — - — ...,
c 422 [+ 422

w=Uze‘i°+—f£<ln z+ln—2——£>
9 0

m 4]

b
+U(bcosa +iasina) o

P [83h)
22

Thus at infinity w- Uze™® and represents a stream approaching at velocity U from a direction
making an angle a with the positive z-axis; see Section 35 and Figure 131.

A

,

Figure 131 ~ Symbolism for flow past an elliptic cylinder.

TH» variables £, 5 are the elliptic coordinates described in the last section. They are

related ‘o z arnd y by Equations [82¢,d] or [82v,w]. The £ curves are confocal ellipses with
foci at (¥ ¢, 0). Here £> 0.

Using the hyperbolic formulas listed in Section 32, from w = ¢ + i ¢,

¢ =U(a+ b) cosh (§~ %) cos (g~ a) - _;‘_q , [83i]
Y = U(a+ b) sinh (£~ &) sin (n -a) + —2[‘; (£~ & (83}

197




or, from Equations [83f, gl, (52, j], {83d, e] and [82x],

7 r
b = (a’a-b"b) cos (g -a) - —- , [33k)
-b on
U r Y
Y= —— (b'a—a’b)sin (g -a)+ — In —"_ (831]
a-b on a+ b

Thus ¢ = 0 on the ellipse £ = £, whose equatior from Equations [82g] and [83f, g}, is

:62 2

s =1

a? 52

This ellipse may represent the profile of a solid elliptic cylinder immersed in the fluid stream,
with its major axis parallel to the flow at infiaity. In going once around the cylinder, 5 in-
creases by 27 and ¢ decreases by I'. Henca there is circulation I' around the cylinder.

If I' = 0, the remaindec of the sireamline for ¢ = 0 is defined by 5 = a on the forward
side or p =& + # on the rear side; it consists of hyperbolic arcs.

‘the components of velocity at any point (z, y), respectively tangential and normal to
the £-ellipse that passes through (z, y), or in the directioas specified in Equations {82b°, ¢‘],
are, from Equations [82y, z] and [82i, j], [83f, gl,

U(b’a-a’b
In = 9g =" (0 a-¢e9) cos (n ~a), (83m]
(a-b) (6°2 + ¢? sin? p¥
1 'U a‘a~b"b | (1-a) r [83n]
= = sin - + - n
% qn (bi2+028in2n)% a-b 1o 27

On the z-axis, where 5 = 0 or 7 and 2 = £ @*, respectively, 6° = /2% - ¢2,

U b
u=tg == a- =] cosa, [830]
a-b 22 - o2
v alz| r
v=2%g, =- ( - ) sing ¥ ———— (83p)
a=-b\ 22 2 27v/2% - 2

On the y-axis, where 5 =n/2 or 3n/2, y =+ b, a’= /6’2 + ¢* = vyt + ¢?
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U b r
u::qtz- (a—' Iy‘ )Cosa ;'——’————' [83(1]

U .
v=iq,, =- ( alyl —b) sina. 183r]

On the cylinder ilself ¢"=a, ’= b, 2= a cos n, y = b sin 5, henco ¢, = 0,

b y z r
g = —————— |U(a+b) [—cosa -—sina)+— (83s]
(6% + c?y?)% b a 2n

and ¢ = |¢,|. If " = 0, stagnation points occur where y/2 = (8/a) tana . For comparisons with
experiment, see Zahm, References 101 and 102.

Examples of the streamlines for I = 0 and o = 0 deg, 45 deg, and 90 deg are shown in
Figures 182, 133, and 134. Here a/b = 9, & = coth™ 2 = 0.549. In two cases only hai/ of
the symmetrical diagram is shown. In two cases the excess of pressure above that at infinity
is shown, for steady motion, at points on the axes or on the cylinder, by curves lubeled
P - P, For points on the y-exis, p - p_ is plotted horizontally from the y-axis as a base
with positive values toward the right. In Figure 135 the calculated pressure on an elliptic
cylinder with I' =a = 0, represented by the broken curve, is compared with observed values
in air ut 40 miles per hour, which are represented by small circles (from Reference 101).

Plane of

Figure 132 — Flow past an elliptic cylindar, incident parallel to
the major axis (a = 0), and pressure p on the cylinder or at
points on the z or y axis.
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Figure 135 — On an elliptic cylindar the T
calculated pressure is shown by a =

|
b
broken curve and observed K__—\L
pressures by small circles. S ; : ; ; =

4\ 3 2 0 1 2 3,97
o, y
"\?\_ =0.54 - R
PR ———
-1.04

In steady motion the resultant force is a lift pI"U per unit length, according to the
Kutta-Joukowski theorem proved in Section 73. Furthermore, comparison of Equation [83h]
with Equation [74h] shows that here y =, b, = U(a+ ) (b cos a + ia sin «)/2; hence

Fquation [74k] gives for the torque per unit length on the cylinder about an axis through the
origin, in steady motion,

1
== (a? - b2) U? sin 2. [83t]

RBecause of the sign, the torque tends to set the cylinder broadside to the stream.

An elliptic cylinder in a converging stream was considered by Okal97,

(For notation and method; sce Section 34; Reference 1, Section 71; Reference 2,
Sections 6.31, 6.32, 6.33, 6.42; Zahm and others, References 182 and 101.)

84. ELLIPTIC CYLINDER IN TRANSLATION

Let the cylinder described in the last section be itself in motion at velocity U in a
direction inclined at an angle a o the positive z-uxis or to the major axis of the ellipse,
and let the surrounding fluid be at rest at infinity. This case can be produced out of the pre-
ceding by imposing on everything a uniform velocity U in the required direction. Then, from
Equations [35a] and [82a], there is to be added in w the term

~Uze™® = = cUe™" @ cosh (.

After inserting exponentials in place of all hyperbolic cosines and eliminating £, and ¢ by
means of Equation [83d, e], from Equation {§3a],

o [a+
©w=U

T
(b cos a + ia sina )e"§+ = (&= &) [84a]
a-b On
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¢ D [84b)

«+ b
$=Uy[—-— (bcosa cos n+a=xina sinp)e”
-5 2n

a4 b . . -£ r
Y==-U (b cos a sin p - asina cos p)e™S+ — (£-¢§,), [84c]
a-b 2 0

or, by Equations [82x] and [83d, ],

a+b . ) Iy
$=U ——— (bcosa cus 4+ asing sing) - —, {84d]
+ b 2n
a+ b . ) r a’+ b’
Y==-U —— (bcosa siny-asina cos g)+ —— In [840)
a’+ b 2n a+d

These formulus hold at any instant provided the axes are drawn with the origin on the axis
of the cylinder and the z-axis along the major axis of its profile. The surface of the cylinder
is the ellipse {= &, ora’=a, b'=b.

The components of velocity, in diroctions given by Equation {82b’ ¢], are, from
Equations [82y, z], [84b] and [§2x],

a+b bcosa cosnp+asina sing

9 =9¢=U , {84f]
n 3 a’+ b (b'2 + ¢2 sin? ﬂ)%
L U at? (b cosa sin i ) X
=g = a S - a sina cos _—
i (6°% + ¢% sin? p)* a’+ b ! T o
[84g)
Or the cylinder itself a’ = a, " = b.
On the z-axis,
p=0ormz=%a’ b= Va2 - c? = \fa? - ¢?,
and Ub(a+ b)cos
u= x qn = (a ) e 3 [84h]
Va2 = e? {|2| + Va2 - ¢?)
Ua(a+ b) sina r .
(2+7) [84i)

‘U:tq‘z— .
-c? (|:c|+\/z -c) 217\/::: -c?

On the y-axis,

p=n/20r3m2 y=%b’a’= Vy? + c?

202




and

Ub(a+ b)cosa

u=% q‘ o o—- — = 3 [84]]
Vy? + e (lyl + Vy* + ¢?)
v=iqn= Ue(a+ b)sina (84k)

S e Ayl + Vo2 e D)

The formulas for this case and the preceding are readily shown to differ by terms representing
a uniform flow, with use of the fact that (a + b) (a - 6) = ¢% = (a’+ b*) (¢’ - 5"\

If there is no circulation ahout the cylinder, I" = 0.

For motion parallel to the major axis, a = 0 or n} to the minor axis, a = /2 or 3r,2.
If " = 0, the geometrical flow net is the same for flow parallel to either axis; the ¢ curves
for one case become the y curves for the other, and ¢, ¢ and all velocities are changed in a
uniform ratio. The general case, for which the formulas have been written, can be regarded
as formed by the superposition of these two simpler cases.

Furthermore, if the motion is parallel to an axis, and if I" = 0, the velocity at a given
external point is the same for all confocal forms of the cylinder. For the relations between
z, y, and &, 5 are unsffected so long as the foci are not disturbed; and changing a and &
merely multiplies ¢, ¢ and hence all velocities by a uniform factor.

Figure 138 will serve to illustrate the flow for motion parallel to either axis. The
ellipse drawn as a broken curve, or any other ellipse confocal with it, may represent the
cylinder. The foci are at the ends of the horizontal heavy line. Either family of curves,
that crossing the vertical or the horizontal axis, constitutes streamlines according as the
motion is parallel to the major or to the minor axis; the curves of the other set are then the
equipotentials. The arrows on the curves refer to motion along the minor axis.

No similar identities occur in motion oblique tc the axes.

The kinetic energy of the fluid, per unit length of the cylinder is, by Equation [17d],
when I" = (,

2
U2 a+b : .
T, LA PV L A e=2%0 I (b cosa cos q + asina sin p)2dy
2 2 ea-9
0
or, using Equation [82d, e],
T, = % pU? (b2 cos? a + @® sina ). (841}

The forces are as in the last case, Section 83.

(For notation and method; see Section 34; Reference 1, Article 71; Reference 2,
Section 9.65; Ratib1%4; Kitenes!03.)




85. FLOW PAST A PLANE LAMINA

If &+ 0, the cylinder of the last two sections becomes a rlane lamina of width 2a. with
its edges at (¥ a,0), on which a stream impinges at velocity U and at an angle of inclination
a to its faces. Then ¢ = g, ¢, = 0. The general formulas need not be repeated, but a few
points may be noted,

On the lamina itself, e’=a=x¢, 6’= b =0, and from z = a cos 3 and Equation [83n],
aftor expanding sin (3 - a),

_ + ] ) _ r
u=%¢q,=U(-cosa ¥ —— sina | § ————, (85a]
a? -~ z? o \Ja? -~ 22

where the upper sign refers to the front face, on which C < y < r, and the lower sign to the
back face; and ¢ = |ul.

Thus ¢ » « at the edges of tho lamins, in general. By assigning the proper value to
I'y however, ¢ may be made finite at one edge. Thus, if I = - 27 aU sina, u approsches

~ U cosa as z+~ g; for, (z + a)/Va® - 22 = [(a + 2)/(a - 2)1% + 0 as z+-a.

If " = 0, stagnation points occur on the lamina at n =« and at p =a + m, or at
¢ =acosa on the front face and at z =~ a cos a on the rear face. The hyperbolic dividing
streamline meets the lamina at the first of these points and leaves it at the second; the two
hyperbolic arcs, with foci at the edges, are asymptotic to a line drawn through the center of
the lamina and inclined at an angle & to its plane. On the front face, u = U at z = ¢ cos (a/2)
and u =~ U at 2 =~ a sin (a«/2).

When I” = 0, however, a more direct formulation becomes possible. Then, from
Equation (83a] with b = 0, & = aU cosh ({ - ia) = aU cosh ¢ cosa - ial sinh ¢ sina. Here,
since ¢ = a, the term in cosa equals Uz cos a and so represents a uniform flow parallel to
the plane of the lamina, which need not be further considered.

The term in sin a taken by itself represents a stream flowing toward negative y and
impinging perpendicularly on the disk. Dropping for a moment the proportionality factor sin
a , so that the velocity of the stream at infinity is U, its complex potential is

w = - iaU sinh { = -~ iU (22 ~ a%)¥. (85b]
If 6=¢ + 2,
¢? ~ 92 = V% (0% + y* - o), U = - U?ay. (85¢,d]
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These equations can easily be solved, cither for ¢ and y, or for z and y. The signs of ¢ and

+» may be inferred either from physical considerations or from a detailed study of Equation
[85b].

On uie yeaxis; ¥ =0, ¢ = U a? + y% u =0, v = - Uy Va? + 2.

On the a-axis where j2j<a: ¢ =0, ¢ =% U Ja? -2, also v =0, u=% U::/\/a—z- z?,
where the upper sign refers to the front face and the lower sign to the rear face. Thus
g luj = {U] at |2} = ap/f2.

On the z-axis where |2] > a: ¢ =0, ¢ = ¥ U /22 - a2, where the sign T is opposite to
the sign of z.

In this case, where the y-axis is a streamline and may represent an infinite rigid sur-
face, half of the flow may represent a stream flowing past a straight boundary carrying a
straight rigid stiffener of width ¢ and negligible thickness, perpendicular both to the bonndary
and to the stream.

Two cases for I' = 0, with o = 45 deg and a= 90 deg, respectively, are shown in
Figures 136 and 137. In the first figure, the z-axis is rotated into a convenient direction.
The points at which «: = £ U are shown by short marks.

~—___———  Figure 136 ~ Flow past a plane lamina

N ——— in a direction inclined at 45°

/\ - to the lamina.
-—'——__——_\

— N\ ——

B \_/,

——

Rotation of the stream and lamina through -90 deg, so that U (if positive) is directed
toward negative  and the lamina lies along the y-axis, gives, perhaps by using Equation
[25k] with @ =~ 90 deg, k =1and A=0, w= U (2% + a®)¥ and

$2 = 42 = U2 (22 + a® - y?), ¢y = U2 2y.

In steady motion, tne lift on the lamina is in any case pI"U, as on the cylinder, and the
torque on it, from Equation [83t], is
1

N=—?npa2025in 2a (850)

where « is the angle between its direction of motion and the plase of its faces. The torque
tends to set the lamina at right angles to the stream.
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Figure 137 — Flow past a plane lamina ata = 90 degrees.

It may seen strange that the lift should remain perpendicular to U at oblique angles,
although the pressure on the lamina is everywhere perpendicular to its faces. The expla-
nation lies in the occurrence of infinite velocities at the edges. In such cases erroneous
results may be obiained if the forces are calculated from an integration of the pressures.

In the present case, study of the behavior of the pressure distribution over the ellipsoid as

it becomes progressively flattened into a lamina indicates that Huite forces must be surposed
tn act on the edges of the laming; sec Morton, Reference 106. Mathematically, the limit of
the intogral giving the lift on the ellipsoid is nct the same as the integral of the limit of the
integrand, whici: reprzsents pressure on the lamina. That the limit of the force must be the
correct value for the lamina, on the other hand, is physically obvious, since no discontinuous
change occurs in the motion of the neighboring fluid as the ellipsoid is flattened.

(For notation and method; see Section 34; Reference 1, Article 71.)

86. PLANE LAMINA IN TRANSLATION.

If the plane lamina described in the last section moves in translation through fluid at
rest at infinity, only its perpendicular component of motion is significant, since motion
parallel to its plane does not disturb the fluid. Let the lamina lie parallel to the z-axis and

-

|
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be moving toward positive y at velocity U. The relevant formulas may then be obtained from
those of Section 84 by substituting 6=C, {, =0, c=a, a=na/2

On the lamina itself 6" = 0, ¢’ = a, = = a cos 5 by Equation [82c], hence, from
Equation (84f, g], ¢, = U and

1 r
u-_-l-'qt-_-i (UO‘——). [86!1]

where the upper sign refers to the front face and the lower to the rear face. If I' = L 27aU,
the velocity is finite at one edge.

The flow net for I' = 0 is shown in Figure 138, in which the dotted ellipse is now to
be ignored. The arrows have reference to motion upward.

The kinetiz energy per unit length is, from Equation [841],

nw
y pa U2, {86b]
The forces are as in the last section; see Reference 1, Article 71.

—]

Figure 138 ~ Flow net around a plane lamina moving perpendicularly
at velocity U with I" = 0.
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87. PARABOLIC CYLINDERS

Consider the transformation

A=iy2z =) +i),, 2= 2+1iy, {874, b]
1 12 .2 9 2
:4:x=-—2-(A2 =AY E= A A A =2 Ay w g, (87c,d,e, (]

r=J2? 4yl {87g]

The surfaces A, = constant, or A, = constant, constitute two families of orthegonal confocal
parabolas, with the z-axis as their axis and the focus at the origin; they open towsard z-
and z- -, respectively; see Figure 139. The parabola for A, = 0 is the positive 2-axis, that
for A, = 0 the negative.

The variables A, X, may be used as parabolic coordinates on the zy-plane. They are
double valued, and changes of sign of A, or A, on the same parabola are necessary in order
to cover the entire plane.
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Figure 139 — Diagram for parabolic coordinates.
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Circulatory Flow. 1f w = AX, ¢ = A, ¢ = AX,, where A is real, the A, parabolas
become streamlines in a type of “low in wkhich there is a singularity at the origin and the
velocity vanishes at infinity. For, then

duw dw/d/\ i4 |4] o
g dz| |dx dz= Qzlzﬁ. T

This might represent a =ort of circulatory flow past a parabolic cylinder whose cross-sectional
profile i . .presestud by one of the A, parabolas, or between two such cylinders corresponding
to two velves of A,.

Streaming Flow. Let

1 .
w=-U (-5 A2 —iﬁ)\) , U and B real and 8 >0, [871]
¢=-u[%(af-xg)+m2] =U(e-BVTTE) (87i)

_ B
Y=~UA (A, -B)=bU(yFBVr-=)=Uy (1-— —= . {87k}
Here, in accord with the labeling in Figure 139, cortinuity has been secured, except on the
negative z-axis, by assuming that A, 3 0; then the sign of A; and tne sign before 7~z
must be taken opposite to the sign of y, but \/r+ z is positive. For the velocity

B ) __BYy |
Y U( 1+2r T+a ,v-grm, {871, m}
2
¢ =U? (1--?—\/r+m + g,—) (87n]

Thus toward infinity v+ 0, v » — U, and the flow bocomes & uniform stream at velocity U
toward negative z. On the positive z-axis r = z and

et (1), 510

The value ¢ = 0 occurs on the positive z-axis, where A, = 0, on the parabola at A, = B.

On this parabola /r+ Z = 8 so that its apex, which represents the stagnatiou line, is at
z = B2/2; its semi-latus-rectum is the value of |y| when z =0 and r = y, or 82. A solid
cylinder may be inserted along this parabola. On the cylinder
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g% = U? (1 - 3—-) . (87p)

2r

Streamlines for the flow past such a parabolic cylinder are shown in Figure 140; only
half of the symmetrical plot is shown. Tho sxcess of pressure above that at infinity, in
stoady motion, is also shown as p — p_,, for points on the cylinder or on the z-axis ahead of it.
This excess is everywhere positive; on the cylinder, it is pU2g82/4r, on the z-axis ahead of it,

2
p—p,,=p02< B —E—). (87q]

Voz E 3]

Plane of Symmetry

Figure 140 — Flow past a parabolic cylinder.

All such flow nets are similar, differing only in scale or in position; for, if B is
changed, it is only necessary to change z, y, u, ¢ and ¢ in proportion to 82 in order to have
all equations satisfied. '

{For notation and method; see Section 34.)

88. THE CIRCULAR-ARC TRANSFORMATION

Equation [78a] of Section 78 invites generalization as follows:

3’ —nc 23-c\"
= ( ) (88a]

2’ + nc 2+ ¢
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where n and ¢ are positive real numbers. The points 2z = ¥ ¢ now correspond to 3°= * ne, and
at these points, in general, comformality fails.
Writing, as illustrated in Figure 141,

i i6

io' ‘.021
3-C=rle 4

1 2 Le'+nc=rje 2

, 24+ C=r y2'=nc=re

2

where - w50, gmy~n g0, g,
it follows that

0;-07=n(0, - 0,). [88b)

Figure 141 — Illustration for a circular arc A, B or C. See Section 88.

This shows that any circular arc joining z = £ ¢, along which 6, - 6, has a constant value,
transforms into one joining 2°= % nc. The tangent to the z arc makes an external angle

y = 0, = 6, with its chord produced beyond z = ¢, or with the positive z-axis; the tangent to the
2’ arc makes a similar angle y”with its chord where

y'=ny. {88c]

Here - 7 < y < n. The respective radii of the arcs, which subtend angles 27 - 2y or 27 — 2y*
at their centers, are R = ¢/|sin y|, R’ = ¢/|sin y’|.
To solve for z“ and y‘, where 2+ iy’ = 3°, write

r

2
=A-ip A=ln — ,pu=6, -0, [88d,e, €]
2-0 fl

2+ ¢

{=In

Then (3’+ nc)/(3’— nc) = e*¢ and, solving for 2%

3’=ne coth 12(- , (88g)
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nc , fnc | .
z’= —— sinh a, y* = — sin 2y, {88h, 1)
29 29

nA n 1
g’ = sinh? e + 8in? —‘-’ﬁ aliry (cosh nA - cos ny), (88j]

&~

from hyperbolic formulas listed in Section 32. Similarly

2= ¢ coth —é-, {88k}
2
> c . 1
z= — ginh A, y= — sing, ¢ = — (cosh A - cos p). {881, m,n]
2¢g 2g 2

Thus p has the sign of y and -~ # g p < ». The variables A, u are sometimes called bipolar
coordinates on the z-plane.

The transformation can be visualized by imagining *he z-plane to be cut along the real
axis between ¢ and to be pulled or pushed until all arcs come into the proper position, with
the remainder of the real axis retaining its direction.

An important special case is that of a circle through (£ ¢, 0) on the z-plane, such as
AB, which transferms into two arcs meeting at an interior angle 2 ~ Z|y] or (2 - n) 7. If
n = 2, these coalesce into a single arc, as in Section 78. If 0 < n < 2, the exterior of the
circle is mapped conformally onto the part of the z’plane lying outside of the crescent
enclosed by the two arcs. If 0 <n < 1, the ends of the ‘‘crescent’’ are reentrant; compare
Figure 142b.

Toward infinity, Equation [88a] beccmes, by binomial expansion,

(o)) el )z ez ).

Hence at infinity 2”~ 2 and the two Llanss agree.

The transformation fails to be conformal, in general, at 2 =% ¢, From Equations
{68g] and [88k]

dz*  dz’[ds\ -1
_z_g._z. a2 =ﬂ2 Sihhzi sinhz—né
dz d¢ \ d¢ 2
(1 N 1 \ )2 n N n N )2
— (A=ip) ~— (A=ip ('—( ~ig) = — (A~ip)
=n2 \e? -e 2 e? -—e 2
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As 2+ ¥ ¢, either A+ ~ or A + - o, and in either case one exponential becomes negligibly
small, while in the other - iy may be ignored. It thus appears that dz2”/dz » = if n <1, but
dz’/dz» 0ifn> 1,

The transformation has several uses; see Sections 80 and 89.

(See Reference: v. Kdrmdn and Trefftz’7 and Miiller”8.)

89. CIRCULAR-ARC CYLINDER, BOSS OR GROOVE

By means of the preceding transformation the flow can be found past any cylinder whose
contour consists of two circular arcs. Only the symmetrical case will be treated here; compare
Figure 142a and b,

el *( Y
c\/c

= Mmn

e
.,

(
L

AN

{a)

(c)

Figure 142 ~ Examples of a symmetrical circular-arc cylinder (a) or (b),
or & circular-arc groove (c) in & plane wall.

To be streamlines, the arcs must transform into part of the real axis of w. Let the
edges of the cylinder be at (¥ ¢, 0) on the z-plane, so that the arcs have a ccnmon chord of
length 2¢, and let each arc make a numerical angle y = m 7 with their common chord produced.
Thus 0 < m < 1, and the internal angle at each edge of the cylinder is 2 (1 - m) #; the radius
of each arc is R » ¢/sin y. Then the transformation Equation [88a] flattens both arcs onto the
same segment of the real axis of z” provided n = 1,’m; the region outside of the cylinder thus
goes into the whole z”plane, and at infinity 2"~ 2.
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Hence substituting also w/U for 2°, a complex potential w dofined by

1

mit = cl z-c\"
= [89a)
mu + cl/ 2+ ¢

will represent flow past the given cylinder, with a uniform velocity U toward negative  at
infinity. Then, in terms of ¢, A, and u as defined by Equations [88d, e, f, k] or [88],m,n],

el
w= — coth -i; [89b]
m 2m
cl A cl u
= —— sinh — , = sin — , 89c,d
=G ™M T VT % [85c,d}
A 1 A 1
G =sinh? — 4 sin2 - = — [cosh — - cos = ; (89e]
2m 2m 2 m m
dv dwfdz\ "' U _hg/,hg 2 (80f]
5 " a\dc = ! sinh =~/ sin o )
dw U A U
g=|-] = 19 (sinh2 — + sin? L) . (cosh A - cos ). [89g]
dz m20 2 2 2sz

On the z-axis where |2| >candp =0, -0,=0,{=1, 2= 2, ¢ =|u| and

U coshA-1 N z+C

Y= - — —— =1 . (89h,i
m2 cosk (Mm) -1 ’ z-c i)
On the y-axis outside of the cylinder, A = 0, { = - iy, ¢ = |u| and
v 1~ cos
U= — - a ,p=2cot'l—y—. (89j, k]
m2 1-cos (u/m) c
On the cylinder itself p = £ m 7 and, from Equation [89g],
Ul cosh A~cos (m
g= i (mm) [se1)

m2 cosh (A/m) + 1
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The maximum velocity occurs at the middle of tho sides, where A = 0, and is

g .. = 1l (1 = cos mm). (89m]
~max 2m2

The edges are stagnation lines; for, with 0 <m < 1, cosh A/cosh (A/m)+ 0 as A+ ¥ o,

Half of the symmetrical streamlines past such a cylinder are illustrated in Figure 143
for m = 0.88, y = 158 deg, and by the apper part of Figure 144 for m = 0.71, y = 127 dog. In
both cases the pressure in steady motion is shown as p - p_, along the surface of the cylinder

and the cutlying parts of the plane of symmetry. The case m = 1/3, y = 60 deg is illustrated
in Figure 157, page 232. If m = 1/2, the cylinder is circular.

y
PP
/
________._——J"‘ I,
—___-_/

Figure 143 — Streamlines past a symmetrical circular-arc cylinder, and pressure p
in steady flow, either on the cylinder or in the fluid along the z or y axis.

Figure 144 —~ Streamlines near & thin sheet
containing the « axis except for a circular-

—T ;l — arc buckie, and also the pressure p on

i‘ both sides of the sheet and the buckle
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The motion of such a cylinder through fluid stationary at infinity, at velocity U
parallel to the common chord of the arcs, can be reprosented by adding a term - Uz in w.

Then, at points where ¢ is small and hence z large, using Equation [33i] in Equations [88k]

and [89b],
2 ¢
a=0Cc— T s e Iy
"%
el [2m ¢ eUf 1 cufl 1
e —]— f — ., )=lUz2=z —|— -1 {-...="— — =1) ...
m 4 tm 6\ 2 3z \ 2

Thus, in Equations [76c¢,d,f], (R) b, = b, = (c?U/3) (1/m? - 1), and the kinetic energy of the
fluid par unit length of the cylinder is

1 2n (1
—— e _ 2 _ 2
T, 5 p[3 (m2 1) ¢ Sjl U*, [89n)

where S is the cross-sectional area of the cylinder or

2
S =

[29(1 -~ m} 7 + sin 2manl. {890}
sin“ mn

The case of motion perpendicular to the chord is also easily treated by noting first
that the slightly modified transformation mz’ = Z = ¢ coth ({/2m), with z = ¢ coth ({/2) as
before, flattens the outline of the cylinder into the segment of ihe real Z-axis from Z =~ ¢
to Z = ¢. The cylinder is thereby transformed into a [amina of width 2¢. From Equation
(85b] for uansverse flow on the Z-piane past such a lamina, w =~ (U (22 - ¢%)*%. Further-
more, at infinity, Z-»2me/{-mz, so that uniform flow on the Z-plane transforms into similar
flow on the z-plane but with the velocity multiplied by m (since © = UZ becomes © = mU32).

Hence, after multiplying w by 1/m in order to keep the stream velocity equal to U on iha
z-plane, and substituting for Z in terms of 2,

ol -1
L (sinh -£—> . (89p)
m 2

m
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This is the complex potential for flow past the original cvlinder at velocity U toward
negative y. Then

c h . u , cl inh A M
= —— cosh —- sin —— = - sinh —— cos —
¢ mG 2m " om ' " mnG am om '
dw d | U
¢ ={>7 al L cosh = sinh™2 £ sinh? —él
d¢ da I m? 2m 2m 2
U 1 A M \ | %
= (cosh A~ cos y) | — [cosh — + cos — . (89q]
om2G 2 m m

When the fluid velocity at infinity is again suppressed, this time by adding iUZ ir w
so as to superpose a flow toward positive y, then at large 2 and small { writing
z2=2¢/{+ ¢{/6.... again,

m 2171 ) 48m$
1 1 2y (1
=icU( +-—-) I=1 (—-—-4-1) [89r]
12m? 6 3z om?

Thus, from Equation [76¢, e], with y = 7/2, e™""/%2 = 4,

1 [en/ 1
T,=—p|=—(—+1) c*-5]| 02 (89s)
2 3 om?

Culindrical Boss or Groove. According to Equations {89d) and [88m], the z-axis for
|z] > ¢ is part of a streamline; hence semi-infinite walls can be inserted there. Provided
m < 1, half of the field then represents flow past a plane wall interrupted by a cylindrical
boss of circular-arc section, which is 2c wide at the base and has an external angle y or
mn between its tangent and the wsll, and hence a radius R = ¢/sin mn. Figures 143 and
157 and the upper part of Figure 144 may also be interpreted as shewing streamlines for
such a flow.

If m > 1, the diagram on the z-plane cverlaps on itself and the whole field cannot be
used. Provided m < 2, however, the upper half of the w-plane taken by itself maps conformally
upon the part of the z-plane that lies above the part of the z-axis on which |z]| > ¢ and also
above the arc p = mn, which now hies below the axis. For this purpose take 0 < 6, < 2,
-m <0, < m then 0 < p < 27 and below the z-axis p lies in the third or fourth quadrant.
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A wall can be inserted along the arc and the outlying parts of the z-axis on which
vy = 0, and tho formulas then represent flow past a circular-arc groove in a plane wall; see
Figure 142c. The velocity is infinite at the projecting edges of the groove.

The lower part of Figure 144 represents the flow past such a groove with m = 1.30,
y = 233 deg; to match the description, the firure needs to be turned upside down and the
z-axis reversed. The entire figure may alsc represent flow on both sides, with the same
velocity at infinity, past a thin sheet with a circular-arc buckle in it. The sheet caanot be
removed, since the pressuros are unequal on the two sides; the excess of pressure p ~ p_,
is shown in the figure for both sides, on an arbitrary scale, on the assumption of steady
motion. Streanlines past a deeper groove, with m = 1.75, y = 315 deg, are shown in
Figure 145.

(For notation and methcd; see Section 34; Refetence 2, Section 6.51, where n = 2m;
J.L. Taylor,32 where m = 1/£.)

Figure 145 — ilow past a sheet or wall with
z a deep circular-arc groove.

9. DGUBLE CIRCULAR CYLINDER, OR CYLINDER AGAINST A WALL

If, in the formulas of the last section, m is made zero while ¢ remains finite, both
arcs come into coincidance with the outlying z-axis. By decreasing c as well, however, the
arcs can be kept finite. Their radius is R = ¢/sin (m ), since each subtends an angle 2(r ~ mn)
at its center; and R remains equal to a fixed number ¢ if ¢ is kept equa! to a sin (m ) as m2-0.
The arcs thus reduce to two circles of radius a touching both each other and the z-axis at the
origin.

Then, at & fixed point representing a given value of 2, { bscomes ‘small in Equation
{88k] as ¢~ 0, and 2+ 2¢/¢; substituting for { in Equation [89b] and noting that in the limit,
as m-+0, ¢/m = a sin (ma)/m -+ an,

na
w = nal coth — . [90a]
2
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Hence, using hyperbolic formulas in Section 32 and 2z =  + iy,

v 2
é = nmal sinh Srnax . na sin nay (90, c]
26 $2 26 #2
1 2 2n a %
G=— (cosh T3 cos ray) = (2 +y?), [90d, o]
2 .2 .2
du 2 2
q= IT . |Ul. (sor]
2 r?.G

These formules represent a uniform stream flowing past two cylinders of radius a in
contact along a common generator, which passes through the origin. The fluid approaches at
velocity U toward negative z and hence perpendicularly to the plane through the axes of the
cylinders, as illustrated in Figure 146.

W

. Figure 146 — Fiow past two similar cylinders
N in contact along s common generator.

%

Or, if a boundary is inserted along the z-axis and only half of the diagram is used, the
flow is represented past a cylinder resting against & plane wall. Streamlines for the latter
case are shown in Figure 147. The excess of pressure avove the pressure at infinity, for
steady motion, is shown in the figure as p - p_, along the positive z-axis up to the origin,
and then around the right-hand half of the cyiinder; the abscissa for the latter part of the
curve represents the angle 8, plotted toward the left.

On the z-axis, ¢ =0, r =% 2, ¢ = |ul, and

272 g2 U 2na -1 242y =2
Um— —17_(1__ (COSh L —1) = i G2 (sinh 'ﬂ_a') [90g]

:82 z
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Figure 147 — Streamlines past a circular cylinder resting against
a plane wall, also the pressure p during steedy motion, along
the wall for z> 0 and then around half of the circular surface.

Thus u-+ 0 at z = 0, the sole stagnation point; for sinh @ increases much faster than @ as

T o,

Cn the y-axis, ¢ =0, r=1 y, ¢ = |ul, and

on? g% U 2ra\ ! 7% a2 U ra) ~2
s ——— (1-cos — =- sin — (90h]

y? y y? y

On the cylinders, 22 + (y+ a)?=a%or =% 2ay, hence ¢ = 0 and

0
n2|U| osc? —
2

72 a|U| nz -1
g= -Tr- cosh — +1 = ot [90Gi]
y y 2 E+ cosh (n cot E—)J

in terms of an angle @ defined as in Figure 147. The maximum velocity, cccurring at z=0
and |y| = 2a, is 22 |U!/4 or 2.47 |U|.

220

© e ——————e <~ - PRI - - - - — e o




Flow Parallel to the Line of Azes. Equation [89p] gives similarly in the limit, with
U replaced by V,

-1
0 = - inaV (sinh ”—a> , [90j]
z

for flow at infinity at velocity V toward negative y and hence paraliel to the line of axes of
the touching cylinders. Then

raV az a 7aV a
= 22 cosh —— gin - y Y= I sinh 222 cos =y [g0k, 1]
G f2 f2 G e2 2

2.2 %
Vi1 2 2
q= e L cosh —— 4 cos My) . (90m])
2@ 2 r? r?

As the origin is approached along or between tha cylinders, cosh (27 a /1) increases without
limit and ¢-0.

The kinetic energy T, of the fluid near unit length of the double cylinder, when moving
at velocity U through fluid that is at rest at infinity, can be found conveniently by substituting
an for ¢/m in Equations [89n] and [89s] and then letting ¢~ 0. This gives, since § = 2ra?:
for motion perpendicular to the line of axes,

1 n? \ 2,2 1 2 742
=< p(? -1/ 2ma? U7 = — p (4.5807a%) U%; (90n)

for motion parallel to the line of axes,

n

1 2] 1
T, = 5P (_6_ - ) 2na? U2 = 5P (1.290 7a?) U2, [900]

In the case of motion perpendicular to the line of axes, a wall can be inserted, as

before; then haif of T, is the kinetic energy of the fluid near unit length of a cylinder that is
sliding along a wall.

(Foi notation and method; see Section 34; Reference 2, Section 6.52.)
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91. CYLINDERS OF OTHER FORMS

Aside from airfoil shapes, cylinders of the following additional cross-sectional shapes
have beon studied, the cylinder being either stationary in a stream or moving through quiescent
fluid. The kinetic energy per unit length of fluvid of dersity p surrounding the cylinder, when
it is moving at velocity U with the fluid quiescent at infinity, is denoted below by T,;
see also Section 34.

108 09

(a) A hypocycloid, by Agostinelli and Sestini.!
(b) Rectangular, by Riabouchinsky!? and J.L. Taylor.®3 For kinetic energy, see
Chapter V.
(¢} Equal-sided quadrilateral of side -3, moving parallel to a diagonal bisecting an internal
angie of 6 radians, by J.L. Tayler.3® Here 2 = f[w"’/(w2 - 1)]0/(2") dw. Tho area is '8

sin 4 and

o (3/2) 2

‘[ - (£

\“en) \om T2

where I" (z) denotes the gamma function of z.

- sin 0] s? U? {914l

(d) Two parabolic arcs meeting at rigkt angles, by J.L. Taylor.33 If 4 is the length of
the chord joining the edges, the area is 42/3, and

(1) For motion parallel to the chord

b 1 A% [s4k* 1
3wy Lf(e? - 1y % au)?, T, Ay < T - 1) U? = ry p(0.178) A2 U?; [91b,c]

n

(2) For motion perpendicular to the choid,

b v \% 2 1 A% f8k* , 1 2.2
2= — f dw sy Iy=—p— {— ~ U% =—(0.683) A% U*.[91d, o]
4 wlo1 2 3 \,3 2

Here b is a constant and K is the complete elliptic integral of modulus /1/2 or

n/2

1 ~%
K = f 1- —sin? 6]  do=1.8541.
o o~

(e) Four equal semicircles, on the sides of an inscribed squsre whose diagonal is of

length D, by J.L. Taylor.33 The ares is (2 + n) D%/4 and
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- =t

t -1

1
wats—, 2= f(1-z“)"‘/'dc ,
0

1 2 02 i2 1 2 2
T1=—2-p(rrK —rr-2)—;— U =-§-p(1.414)0 U*, (91

where K is as in (d).
(f) Circle with radial plane extending to infinity on one side:

z a?
w=C (yJ— +3J— J+U {2+ — ), Cand U real
Ua Vz z

A few streamlines for positive values of C and U are shown in Figure 148; see Cisotti.!!!

(L
a /. —
0<C<dal
C>0,U=0
Figure 148a Figure 148b

Figure 148c

Figure 148 — Streamlines around a circular cylinder attached to a
semi-infirite plane. (See Reference 111.)
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(g) Circle with a radial fin of finite width, by Bassani,1!2
(h) Circle with two equal 1adial fins opposite each other, by J.L. Taylor.33 Let the
preatest width between the outer edges of the fins be n times the diameter of the circle.

Then, for motion perpendicular to the plane of the fins,

1 1
2 Wu? -k + Ju? -4 -k, k=n- -,
n

(&

and

1
Ty= —pr(l+ k?) a* U? (91g]

where a is the radius of the circle.

(i) Broken line, or two plane laminas joined by their edges, by Morton,!%% by Sona,’ 15
and, with special reference to an airfoil equipped with a rudder, by Sauer,!® who gives
other references. Streamlines for the flow without circulation past a right angle, approaching
at 15 deg to the plane of one side, are shown in Figure 149. By properly choosing the cir-
culation and the direction of approach of the stream, the velocity can be made finite at both

edges of the lamina, whatever its angular apertur2, as in Figure 150; see Sona,!15

v y 3}
- 0

— NS
— S

: / 20
———

Figure 150 — Streamlines past an angle-lamina A3B,

Figure 149 — Flow past a right-angle. with th? direction of approach of the stream and
gSee Section 91(i). (Copied from the circulation around the lamina so chosen
Reference 106.) that the velocity is finite at both edges.

See Section 91¢i). (Copied from
Reference 115, Lincei 22.)




(j) Rectangular cross, by Westwater.!1?

(k) Arc and line joined together, by Sauer.!!®
() A small circular cylinder of radius @ in motion but mementarily coaxial with a

surrounding stationary square cylindrical shell of width 2¢, by J.L. Taylor:33
a2
T, = — prra2 1+1.719 —}. [91h]}

(m) A convex curve joined to a straight segment, by Riabouchinsky;! 10
(n) Contours described parametrically by

@ =acos u+ (bcos 2u)/2, y = b sin u - (b sin 2u)/2,

h,lls r’121

or by other analytical formulas, by Morris,”3+ 119 Basset,!2% Neronof
122

by Wrinc

Milne-Thompson.
A general method of modifying the Schwarz-Christoffel transformation so as to intro-

duce rounded edges or other curvatures, by adding ‘‘curve factors,’” was described with

4

examples by Leathem;’* see also page 123.

92. T™0 ERUAL LINE DIPOLES WITH AXES LONGITUDINAL; FLOY PAST
ONEZ OR TWO SIMILAR CYLINDERS

1 1
eevern (g0 ). (920)

z-b z+ b

U, u and b real constants and & > 0,

cos §,  cos 6, 2-b z-b
¢=Uz+p + =Uz+p + , (92b]
T 2 rl2 r2

2

sin 0, sin ¢, 1 1
U=Uy— + = Uy - py <—2- + —-—) ) [92¢]

r r 2
1 2 fl f2

where 7, = [(z - 8)% + y21%, ry=l(z+ 5)% + y21%, and the sigmficance of the angles
0, and 6, is shown in Figure 151. Hence

cos 2 0, cos 2 02\ ‘sin 2 0, sin 2 0,
u=-U+p + ,v=p< + " , (92d, e]

2 2 2
rl r2 " r2
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Figure 151 — Two equal line dipoles with longitudinal axes
(in the direction of ).

) /cos 2 0, cos 2 0, , [1 1 2cos (20, -20,)
g =U"=2ul ( > + ; + - + = + P . [92f]
\ N o/ 1 2 T T2

On the 2-axis u = u, and on the y-axis u = u, where

2 2 2 2
z b b4 ~
u=- Va2 — 2y e Uy — . (92g, k]

(22 - b3’ (62 + 3%’

A. Tuo Line Dipoles Alone. 1f U = 0, the field of flow is that due to two equal line
dipoles whose axes are parallel and directed along the line through the locations of the d.poles,
which are at (£ 4, 0); compare Equation [37a). Stagnation points occur on the y-axis at
(0, £ 5), where 0, = 135 deg, 0, = 45 deg, and = 7 p,’b. Streamlines for |&]| <|x|/b run
through both dipoles; those for || > |u|,’d consist of two disconnected loops, one associated

with each dipole. Streamlines above the z-axis are shown in Figure 152.

B. Flow Past One or Two Similar Cylinders of Special Shape. Assume that U/p > 0,
so that the dipole axes are oprositely directed to the stream at infinity, whose velocity is
U toward negative z. Then the streamline for ¢ = 0 consists of the z-axis and the curve
S defined by
i+-1—=—2—,c=\/:-2f-. {92g,h)
S v

If ¢ is large, Sis an oval curve cutting the z-axis in two stagnation points; as ¢- <, it approxi-

mates a circle. If ¢ = b, it contracts in the middle to a point at the origin; for c<¥, it consists

of two loops, one surrounding each dijole. Several possible forms of § are shown in Figure 153.

The formulas may represent flow past a cylinder, or two parallel similar cylinders, in-

serted along 3. If ¢< 5,2, the cross-sections of the cylinders are nearly circular; even if their
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Figure 152 — Streamlines on one side o
dipoles at £, Sec Section 92.

f the plane of symnietry due to two line
(Copied from Reference 124.)

_\\ C?x 8b°

C2 =4
—-/—'-\

02, 52
el

&

AN
\

')

-

.————/

Figure 153 — Some possible forms for

the dividing surface S due to two line

diroles in a stream, See Section 92. (Copied from Neference 124.)
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diameters are as large as tho distance between their surfaces, the maximum and minimum
diamoters of each cylinder differ by loss than 4 percent: if their diameters are at most half of
the distance between them, the difference is less than 1 percent.

In the case of two cylinders, the forces on them, which are equal and opposite, are

casily found from the Blasius theorem. For the cylinder surrounding z = b, write du/dz thus:

du Qo1 1 (2 - b) (2 + 3b)
— = -pl—t — - — .
de L(z - 5% 42 46% (2 + b)2

Subsutution in Equation {74g] and evaluation of the integral from the residues, as in Section 30,

then gives for the force X = mpp?/(263). The cylinders repel each other, because of lower

velocities between them, For the approximately circular cylinder, 1./:',22 may be dropped in '
comparison with l/rlz, and Fquation [92g] then gives for its radius a=r, =e/N2 = Vu/U.

Thus in this case the force is, approximately, ¥ = np U? a*/(263).

(For notation gnd method; see Section 34; Reference Muller 124.)

93. TWO EQUAL LINE DIPOLES WITH AXES TRANSVERSE; FLOW PAST '
ONE OR BETWEEN TWO SIMILAR CYLINDERS.

i
1 1 ,
w=Uz+p ( + b) , [93a;

2-1ib 2+ 1

U, u and b real constants and 6> 0;

cos 0l cos 0, 1 13
éd=Uz+p + =Ua:+yx(— +——), [93b]
r r 2 2

1 2 7'1 f2

{Sih ¢, sind, 1 1
b=ly-pl + =y |U-u|l— + — -
\ T 2

“2\_| , [93c)
2,2]

2 2
1 P! Fy 7y

where
2 2% 2 2j4
rn=let s (y-0)7", r, =27 + (y+ 0%, [93d, e]
and the significance of 9, and 0, is shown in Figure 154. Hence

cos 20, cos20, /sin2 0,  singo,
u=-U+p <— - + " ,v=p & + " . {93t gl

2
y Ty Ty Ty

s 2 cos 20, cos 20, .1 1 2cos (20,-20,)
“=U*"=-2uU ; + +pf— + — +

4 2 .2
r r 2 SULL
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Figure 154 — Two equal line dipoles at (0, £5), with transverse axes
(parallel to z). For the near-circle see Section 933.

On the z-axis » = ¥, and on the y-axis u = u, where

2 2 2 2
z°-b b
ul=—U+2[l.-—-—'—,u2=—U-2y-y+_. {93h,1i]

2 2
(=? + %) (v* - %)
There is flow symmetry aboui ine plane y = 0, mere gecmetrical symmetry about z = 0.

A. Two Line Dipole.. Alone. If U =0, the flow is that due to two equal line dipoles
whose axes are paraliel but directed at right angles to the line joining the locations of the
dipoles, which are at (0, ¥ ): the dipole axes have the direction of the z-axis. Stagnation
points occur on the z-axis at (+ b, J): streamlines run to these points, divide, and continue
in opposite directions along the z-axis. Some streamlines are shown, above the z-axis only,

in Figure 155.
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Figure 155 — Streamlines, above the plane of symmetry, due to two equal line dipoles
with transverse axes. Sec Section 93(A). (Copicd from Reference 124.)

B. Flou Past One or Between and Around Two Similar Cylinders of Special Shape.
Assume U/p > 0, so that the dipole axes are oppositely directed to the stream at infinity,
whos< velocity is U toward negative z.

Yo

The streamline for ¢ = 0 consists of the z-axis and also of the curve S defined by

1 1 452 ) 9 )
St
n ry Ty % c

provided ¢? 2 86%. If ¢ is large, S approximates a circle enclosing both dipoles. As ¢
decrenses, § becomes compressed along the w-axis; when 2?2 - 842, S consists of two cir-

cular arcs defined respectively by r, = 26 and r, = 25 and meeting at the stagnation points,
which are then at (235, 0). This is & special case, for n = 2/3, of the flow considered

in Section 89. As ¢? becomes less than 842, the curve defined by 93(j) disappears, ang the
dividing surface splits along the z-axis to form two separate curves, cach of which surrounds
ore dipole and carries two stagnation points. The curves can be found by setting u=v=0 in
03(f, g) in order to find the stagnation points and then calculating the value of ¢ at these points
from 93(c); with this constart value of ¢, 93(c) defines the curves. They soon approximate to
circles, whose radius, for small ¢/b, approximates ¢/\/2 = Vi, U.

The dividing surface may represent a cylinder, or two cylinders, of a cerwin shape,

immersed ir a uniform stream. The limiting form of § for ¢ = 862 and a larger oval are
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shown in Figure 156. Half of S for the case ¢ - £.94 b is shown by the approximate circle in
Figure 154. The streamlines for flow past the limiting form are shown, above the z-axis only,
in Figure 157. If ¢2,/85% is rather small, there is an approximation to two circular cylinders
in a stream perpendicular to the line joining their centers, which are 25 apart.

The forces on the two cylinders can be found from the Blasius theorem, as in Section
92. The cylinders attract each other, because of higher velocities between them, with a
force F = mppu2/(26%) acting on each. For slender circular cylinders of radius a,
F =npU?ad*/(2b3), approximately.

A rigid wall may also be inserted along the z-axis. Then half of the field represents
flow past a cylinder of a certain shape with its axis distant 6 from a rigid wall. The force
b, now directed toward the wall, remains the same.

(For notation and method; see Section 34; Reference Miller 124.)

Y
T~ 2. 1882
\cz- 852
[

l :
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Figure 158 —~ Two possible forms of the dividing surface S for twe
equal line dipoles at (C, £ 6) in a stream. See Section 93(B).
(Copied irom Reference 124.)
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Figure 157 — Streamlines above the plane of symmetry, outside tke dividing surface §
obtained from two line dipoles in a stream. See Section 93(B). The L. undary may
also represent a circular boss on a plane wall, with the z-axis taken aiong the
wall, or half of a symmetrical circular-arc cylinder, as in Section 89.
(Copied from Reference 124.)

94. TWQ CIRCULAR CYLINDERS IN A STREAM; CYLINDER AND WALL

Since a cylinder immersed ir a uniform stream merely adds the flow due to a certain
dipole on its axis, as in Section 67, und the image of a dipole in a circular cylinder is another
dipole, as in Section 52, the flow around any number of cylinders in a stream can be buiit up
in terms of an infinite train of image dipcles in each cylinder. Circulation around the cyl-
inders may be added by assun.ing a suitable vortex on the axis of each, and then an infinite
train of image vortices inside each, in accord with results in Section 42,

Oniy the first approximation to the solution will be given in detail here.

Let two cylinders 4 and B have radii a and b, and let their 2xes be located, respec-
tively, at (0, 0) and {~d, 0) so that uiey are d apart, and let a/d and b/d be small. Let the
stream approach at an angle o with a line drawn through their axes, as illustrated in Figure
158; and let there be circulation Fl about 4 and I, about 8. Then a first approximation to
the complex potential is

. . a? b2 7
w="U|zet® 4 '@ _+z+d +;—[Fllnz+l‘21n(a+¢l)]. {94a]
2 n

— s
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Figure 158 ~ Two circular cylinders in a stream. See Section 94.

The first term represents the flow past each cylinder as if the other were absent; it is con-
structed out of Equation [69j], in which, for the torm representing the contribution of the
second cylinder, z is replaced by z + d in order to displace its axis to (~d, 0).

The forces on the cylinders may be found from the Blasivs theorem. Here

2 2 . I I,
ﬁ=Ue"'.°‘--Ue""'<’f—+ ° >+i — 2).
dz 22 (z+a’)2 o207 \ 2 z2+d

By proceeding as in Section 42, it is found from Equation [T4g] that the force on 4 has
components

2 2 -
a°T, - 6°T el T, 2,2
. 2 1 172 a b
X, =-pl\¥sina + pl ————— sine + + 4mpU? cos 2a, {94b]
d? ond a3
@®T, - 62T, a? b?
Y,=pT|Ucose + pl ————— cosa - 4npl? s 2a. [(94c]
d? &

The force X,, ¥, on B can be found by substituting in these expressions -d for d and aiso
interchanging a2 with 42 and [, with [,. All terms containing d thus merely change sign.

The first terms of X and ¥ represent the usual lift, and the next terms a possible

modification of the lift due to the presence of the other cylinder. The term in I'; T, represents

a (irst approximation to the circulatory interaction, as fcund for a simpler case in Equation
[42¢ "] of Section 42. 1t indicates that like circulations cause repulsion, unlike, attraction.

The terms not containing a? or 52 have the seme values for two slender cylinders of any
cross-sectional shapas.
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There remains in addition a force of magnitude 4mpU? a2 b2/43 inclined at an angle
2 ato the line of axes. This forco i shown as F}, in Figure 158. Its direction is such that
a stream flowing parallel to the line of axes causes the cylinders to rerel cach other, where-
as u transverse stream causes them to attract, When the su-':mm is oblique the forces tend to
turn the line of axes into a direction perpendicular to the stream.

If the stream is abolished by giving to everything an equal and opposite velocity, the
forces remain the same. Then the cylinders, if free from circulation, repel each other when
moving at equal speeds along the line of axes, but attract when moving in the same direction
transversely to this axis.

It will be noted that no images at all have been included in this a; -oximation, except
those associated with the stream itself. Their inclusion leads to terms ot uigher order in
1.’d, for each of the three types of terms containing U2, I'U, or I'y [, respectively.

If more than two slender cylinders are present, it is easily seen that the forces are
additive in first approximation; the presence of each cylinder modifies the lift on every uther
and contributes interaction forces upon it according to the formulas just found.

The complete solution for noncirculatory flcw past two cylinders of equal radivs was
written out in terms of images by Muller.!2* Streamlines for I" = C, and for «= 0 and
a = 90 deg, respectively, are shown in Figure 159. The directions of the forces on the

cylinders are also shown.
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Figure 159 — Streamlines for flow in two directions past two equal circular cylinders.
The arrows indicate the directions of the forces on the cylinders, when the
motion is steady. (Copied from Reference 124.)

The flow was treated with no restriction upon the sizes of the cylinders except that
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they are external to each other, in terms of elliptic functions by Lagally,” *> and with use

of bipolar coordinates and seriee by Endo.!26
Cylinder and a Wall. If the two cylinders just considered have equal radii and equal
and opposite circulations, or no circulations at all, and if the stream approaches perpendic-

ularly to the line of axes, then the plane that bisects the line joining the axes is a stream

234

ok




surface and may be replaced by a rigid wall. Then half of the ficld represents flow along a wall
and a slender circular cylinder parallel to it. For an exact solution, one of the treatments of
two cylinders may be used, or an earlier direct treatment by Riabouchinsky.!?7

A first approximation to the force on the cylinder, which is equal and opposite to that
on the wall, is given by Equation [94b, c].

Put @ =90 deg, so that the z-axis is perpendicular to the wall, I', = =T, = I" where
I" is the circulation around the cylinder, and @ = 2k where & is the distance from the wall to
the axis of the cylinder. Then Y, = 0 and; writing V instead of U for the velocity of the

stream and X for the force on the cylinder,

2 2 4

I 1 a

,‘.’:—prV/l-i- S L (94d]
\ 2}22 lﬂ}l 2 hs

where « is the radius of the cylinder. Thus the e‘fect of V alone, or of T" alone, is an
attraction between the wall and the cylinder. The joint effect of circulation and stream is
likewise an attraction when the two resulting comporants of velocity are in the same

direction along the wall.

95. SLENDER CIRCULAR CYLINDERS HOVING INDEPENDENTLY,
OR NEAR A WALL

When cylinders such as those considered in the last section move independently, the
method of images can still be used, since a moving cylinder is equivalent to a dipole located
on its axis, but the motion cannot be made steady by a suitable choice of the frame of
reference. The forces can then be determined either by integration of the pressure or, more
conveniently, by first finding the energy and then using the Lagrange equations. The latter

method will be used here, to a first approximation only.

(A) Two Slender.Cylinders

Let two parallel cylinders A4 and B have radii, respectively, a and b, and let 4 be
moving at velocity V in a direction inclined at an anglea to a line P@ drawn through the
axes cf the cylinders in the direction from A toward B, while B is moving with velocity W
inclined at the angle 8 to the same line; see Figure 160. Assume that there is no circulation

around either cylinde¢; and for the present let the fluid be at rest at infinity.




A

Figure 1680 — Two slenduc circular cylinders in niotion. See Section 95.

The first approximation to the velocity potential represents a dipole on the axis of

each cylinder and is, from Equation [37s] in Secticn 37,

cos (0, -a) cos (0, - B)
¢ =a?V —— + B2 ——— [95a]
T "2

where r,, ry, 0,, 0, are adequately defined in Figure 160. The flow due to each of these
dipoles then violates the boundary condition at the surface of the .ther cylinder, hence their
respective images in the other cylinder must be added, then, for a similar reason, the images
of these images, and so on. Only the first pair of images will be included here.
Furthermore, to the same degree of approximation the displacement of the first images
from the axis of the cyiinder containing them may be neglected. Their contribution to the

rotential s then, from Equation [52¢],

a? p? cos (0, +a) a2 p? cos (6, + B)
¢ =~ 14 - W [95b)

r2 r2 r2 I'l

where r is the distance between the axes of the cylinders.
The contribution of cylinaer B to the integral in Equation {17d], which expresses the
kinetic energy of the fluid, is then

) 27 1 2n
T p f $q,ds = 5— p J( (d7+ &™) W cos (0, - B) bd0,.
0 0
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On the surface of B, r, equals b. Furthermore, to include only terms of order 1,72, it is

sufficiently accurate to write, by projection of the radius of B,

1 b cos 02 b sin 62

rl-r+b00502,—r—~=-—-——- ,sin @, = ——— ,cos 0, =15

1 r r2 r

and the second term of ¢” may be omitted.

The result of carrying out the integration, after adding and ovaluating the correspunding
integral over 4, is the following simple expression for the total kinetic energy of the fluid per
unit length of the cylinders:

2,;2

] 2

4a
p |:a,2V2 + b2W2 -

r

VIV cos (a + ﬁ):' . [95c]

The next stop is to express the energy in terms of coordinates representing the positions
of the cylinders. Let the Cartesian coordinates of the axes of 4 and B be z,, ¥,, and Ty Yoo
and let the corresponding components of velocity be denoted by 5:1, 3}1, :52, _1}2. Let the line

of axes P@ make an angle 6 with the positive z-axis. Then, by projection,

. » . . a .
Vecosa =z, cos 0+y,sin 6, Wcos =g, cos +y, sin 0,

2

Vsina=-z sin 0+ y; cos 0, W sin 8=~ z, sin 0 + y, cos 0.

Substitution for V and W in Equation [95¢] gives

rr * L . *
T, =5 P {a2 (:::12 + y12)+ b2 (222 + yz"’)

4a%p? ., . .

(2, 2, = ¥, ¥,) €08 20 + (&, ¥, + Z,,) sin 20]} . [(95d}

r

Here 7 and 6 are to be considered as furctions of z,, y,, 2,, ¥,
Now let X, 5, Y, p denote components of the force exerted by the fluid on unit length

of cylinder B. Then the reactive force on the fluid is - X, 5, - ¥, p, and the Lagrange equation
for z, is

—————




. d [y 288 e sin20]
- = -_— x, — cos 2 sin 2
187" 1 2 2 (2, cos + Y, )J

4q2 b2 . e . . .. . . dr
- Wz, 2, =y, ¥,) cos 20 + (2,9, + 2, 9,) sin 20] Py
r 2
4a262 . el . . .. 30
- (2, 2y~ y,y,) sin 20 - (2,9, + z,9,) cos 20] — 3.
r dz,

A similar equation is obtained for Y, 5.

For simplicity, after differentiating with respect to ¢, let the axes be rotated so that at

the instant under consideration @ = 0. Then it is easily seen that at this instant

. . do Y2-¥1  or ar 90 w1
—_— i mF, — = ———  — 2], — =0, — =0, ——

dt 2T r ’axz—’ayz_’c?%:’ayz:r

Hence, with axes choser so that 0 = 0, the force upon B has components

2q? b2
I\IB = ap |\"’b2z2 +

. 1a2p? | .
T, + —— (:rl2 - yf)] . [95e]
;2 23 i

- z (95f}
I ¥i 3 1 Y1

ro,.. 24252 ,, 8a%b% . .
Y113=”P|_‘6 Y2~ ’
r

where two dots denote two differentiations with respect to the time, or a component of
acceleration. Here z, =V cosa, y, = V sin a.

Similar expressions are obtainable for the force on A, but it is also possible to use
the equations just found by interchanging notation between the cylinders.

A stream at irfinity can be introduced by changing to a uniformly moving frame of
reference. This change does not affect the forces or the accelerations; the equations for
X,p and Y| 5 as they stand can, therefore, be used in all cases, with the understanding that
x", ¥y» V and a all refer to the velocity of cylinder A taken relative to the fluid at infinity.

The first term in X, p or Y, p represents the usual effective increase in the inertia of
3 due to the presence of the fluid. The remaining ter ns represent the effect of .1 upon B,
and are valid only if a/7 ard b/r are small. It is readily seen that the errors due to the
approximations are of an order in 1 ’r that is higher than 1,72 in terms that involve the

acceleration and higher than 1,73 in those that do not.
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The interaction effect may be stated as follows, ir first approximation:

(1) Acceleration of either cylinder evokes a force on the ather whose magnitude equals
2rp a®52,r2 multiplied by the acceleration, and whose direction is inchined to a line drawn
through the axes of the cylinders at the same angle as is the acceleration but on the opposite
side of that line; compare Figure 161. The ‘orce and acceleration have the same direction
when they lie along the line of axes, but opposite when they are transverse. For, 5:'1 and jjl
are the components of the acceleration of A, and the ratio of the terms containing them in
X pand ¥, p gives —}jl,’:'z:'l as the tangent of the inclination of the force to the r-axis, which

is now assumed to be the line of axes.

Figure 161 — Illustrating direction of force due to acceleration of
another slender cylinder. See Section 95(a).

(2) Motion of either cylinder at velocity V relative to the fluid at infinity, in a direction
inclined at an angle a to the line of axes drawn toward the other cylinder, evokes a force
upon the other whose magnitude is 4mpa? 62V2/r3, The direction of this force makes an
angle 2 o with the line of axes drawn as described, but it lies on the opposite side of this
line from the direction of the valocity V. This force is shown as F, in Figure 160. For,
when 0=0, 22 - y2=V2cos 2a, 23 5, = V? sin 2a.

In particular, a slender cylinder moving toward or away from another (a = 0 or «), or
stationary but immersed in a stream that is uniformi at infinity and directed parallel to the
line of axes, repels the other cylinder, whereas, if the motion of the cylinder or of the stream
is transverse to the line of axes, the force is attractive.

If more than two cylinders are present, the forces due to the motion of each are simply
additive, in this approximation.

(B) Slender Cylinder and a Wall

If b = a, if the fluid is at rest at infinity, and if at 2ll times B=n~a and W =V,
then it is obvious from symmetry that the plane bisecting the line joining the axes of the

two cylinders remains a stresm surface. A rigid wall may be inserted along this plane, and

cylinder /1 and the fluid on ils side of the wall may be discarded.

[+9
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Then the formulas may be taken to refer to a cylinder of radius a moving with its axis

distant A = r/2 from a rigid parallel wall; a4 is to be assumed small. See Figure 162.

Y

Figure 162 — Slender cylinder myving
near a wall. See Section 95(B).

The cylinder has a velocity V inclired at an angle 8 to the positive z-axis, which is drawn

perpendicularly away from the wall. The kinetic energy per unit length is half of T as
given by Equation [95¢] or

2
(74
'I'1='1p¢22V2 {1+-——). [95g]
2 2’12

Let the components of the acceleration of the cylinder be denoted by z and y. 'Then in
Equation [95e, f]

Z =-Z, =%, Y, =Y, =Y, 2 =~V cos B, y, =V sin B;
and the component of force X, on unit length of the cylinder, taken positive away from ‘he

wall, and the component Y, teken parallel to it and toward positive B are, from Equations
{95¢, f),

zos 2 B, [95h)

sin 2 B. [95i)

[
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The wall thus appears to repel a cylinder that is moving toward or away from it (8 = 0 or r),
but to attract cne that is moving parallel to 1t (8 = »,"2 or 37,2).

A flow parallel to the wall and uniform at infinity may be added. Then the velocity of
the cylinder is w be taken relative to the fluid at infinity. If the cylinder is stationary, the
stream pusi:os it towsrd the wall.

For the general case of two cylinders, see the references in Section 94 or Basset.®

96. TWO OR THREE LAMINAS

The noncirculatory flow past two plane laminas, placed with their central axes par-
allel ard with their faces perpendicular to the plane through their axes, has been treated by
Nomura.!28 The torques on the laminas tend to turn them perpendicular to the incident
stream. The resultant forces on the two laminas are equal and opposite; if the laminas are
of equal width, the forces tend to separaie the.n and are proportional to cos? ¢ where ¢ is
the angle between the direction of the stream and the normal to their faces. See also
Ferrari,!29

The flow past a similar pair of lamiaas of equal width, with or without circulation,
has been studied with reference to biplane theory by Kutta,”6 Schmitz!39 and Munk.!3}
Lines of flow for two positions of the laminas, in a strean perpendicular to their faces, are
shown in Figure 163.

Three parallel laminas were studied by Tani.!32
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Figure 163 — Streamlines past two similar plane laminas
in two positions. (Copied from Reference 133.)
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97. GRATINGS

A linear grating consists of a set of parallel cylinders or laminas of any share, usually
infinite in number, all alike and similarly osiented, with their centers equally spaced along a
straight line. Examples occur in Sections 46 and 47.

Another simple case that can be treated with elementary “:.¢. vu . is the following:
a 177
z=— Incos — , [97a}
b aV
1 2 2
e= — In| = (cos ond + cosh —Tib) , [97b)
2n 2 aV oV
G wph ay
=--c“(t —~ tanh -— 97
y - an an 7 an aV) y [97¢]
V . 2a¢ | 2y
u= ~— sin —2 , 0= Py sinh —~ [97d, -]
Y 1 2n¢s Ond
G = sin2 :r:% + Sillh2 ;1_’. = '5' ( cosh ‘E‘ -~ COS8 ";‘v—') . [97”

The field represented by these formulas is clearly periodic in the direction of ¥,
which changes by e when ¢ is increased by aV, while z, u, and v return to their initial values.

Assuming such a definition of tan™? that ¢ = 0 and ¢y = 0 at ¢ = y = 0, let ¢ for the
moment he kept equal to zero. Then, as ¢ increases from zero, y remains zero but z decreases,
down to - = at ¢ = ¢V /2; there, let the tan~! in y decrease discontinuously by n; then, as
¢ increases further, 2 returns along the line y = a to the point (Q, @) where ¢ = aV, then
recedes again along the same line, returns after a further decrease of tan™? by » along y=2a,
and so on. That this interpretation of tan™! is in harmony with continuity is seen by assuming
¥ to be slightly less than zero; then z recedes a long way toward 2 = - o, tan™! decreases
rapidiy almost to ~r as ¢ passes through the value «V,’2, then 2z returns slightly below y=a,
swings around (0, a) as ¢ increases past the value @V, recedes again slightly above y = a,
and so on. Negative ¢ corresponds similarly to negative y.

The real axis of u is thus transformed int» an infinite set of lines parallel to z, spaced
a apart and each extending from 2 = - = to z=0. A set of r'pzid planes may be inserted along
these lines, “orming a plane grating, having plates of infinile width.

As iy decreases to a large negative value,

z++ o, u»0, v+ ~V, since sinh/cosh » - 1.

Thus, if ¢ is assumed to be negative, the formulas represent flow past the grating with a

velocity V toward negative y at di<tant points. A few of the streamlines are shown in Figure
164.
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Figure 164 — Stream.nes past a grating or
grille consisting of semi-infinite plates
symmetrically placed. (Copied from
Reference 133.)

The penetration into the grating spaces is small. On one of the plates, where ¢ = 0
and z <0,

nx 2nx %

—

u=Vcot,1?-=iVe“ 1-¢e® , [97g)
ay

after solving Equation [97b] for ¢ in terms of z.

A uniform stream at velocity U parallel to the plates can easily be added. Then a
representation is obtained of a stream that approacues at velocity VU2 + V2 and at an angle
tan~! (V/U) with the plates, and flows off between them. Part of the sireamlines and flow
net for such a case are shown in Figure 165, in which tha plates extend off toward the right.

| =} d— 1=t ~§-

b = 4 .

Figure 165 — Oblique flow (without circulation) past and
through a grating as described under Figure 164.
(Copied from Reference 135.)
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The transformation Equation {97a] can be arrived at by first transforming the grating
1into a cylinder represented by the unit circle on the ¢-plane, using z = (a/=) In [(¢+ 1/¢)/2),
and then assuming w(¢) to represent circulatory flow around this cylinder. This is dora hy
Prandtl.!33

A similar infinite grating with plates of finite width and flow past both sides was
treated by Kutta,”® Grammel,'3% and Engel.!3% Other cases are considered.by Swuding,lw
Ringleb,’ %7 138

Konig,!38 and, with direct reference to turbine theory, by Busemann!3? and

Weinel:*40 see also Sedov, Reference 141.

Civcular Gratings

Gratings may also be constructed with circular symmetry, so as to have the property
that the grating coincides with itself after a certain integral fraction of & turn about :he axis
of symmetry. The flow through such gratings has been studied us a basis for applications
in the theory of turbines and centrifugal pumps. For this purpose a line source and vortex
may be assumed to exist on the axis, aiso circulation about the exterior of the grating, and
perbaps other line vortices disposed with the symmetry of the grating. References:
Sparnhake,**? Schulz,'*3 Florin,'*# and other references there given.

98. VORTICES NEAR CYLINDERS OR WALLS

In addition to the simple cases treated in Section 42, many other cases have been
studied of a line vortex in the presence of a rigid cylinder or wall. Usually the center of
interest has lain in the motion of the vortex itself, which is assumed to move with the fluid.
The following may be noted:

Vortex near a lamina: Cisotti,’#5 Paul,45:46 and Caldonazzo.!46

Vortex near a slit in an infiinze plane: Paul.*®

Vortices near a broken wall or in a channel of varied width: Mazet,!*7 Miller,%1 48
Miyadzu,149 and Zeuli.!50

Vortex near a semicircular lamina or near a wall with a semicircular boss: De.!S?

Vortex inside a semicircie: Cisotti.*52

Vortex inside a rectangular cylinder: Jaffe,30 Miller,'4® and Seth.!53

Vortex inside a curvilinear rectangle: Greenhill,2® and Kondo.!%*

Vortex near an elliptic cylinder or inside an elliptic shell: Coates,!55 and
d:158 158
’

159

Rosenhea also Caldonazzo,32 Poggi,157 Sanuki and Arakawa, and
Tomotika.
Vortex near a parabolic cylinder: Masotti. %9

32

Vortex near a cylinder of certain other shapes: Caldonazzo,”” a cardioid, %! where

the force is questionable; Morris, 22
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Vortices between parallel walls: Jaffé30 and Masotti;'®2 trains of vortices, Jlauert, 63
Rosenhead, 64 Tomotika,'®5 Imai,!%6 and Schwarz.!67

"two vortices and two parallel laminas: Riabouchinsky!®® and Villat.!¢?
Source and vortex near a plane lamina: Cisotti'*% und Agostinelli.!?’® By using two

out of the three elements source, vortex, and circulation the velocity can be made
finite on both edges of the lamina.

ROTATING BUOUNDARIES
99. MQVING BOUNDARIES

From the properties of the stream function ¢, the required condition at a moving
boundary is readily seen to take the form

— qn, [99&]

Here dy/ds is the space rate of change of ¢ along the boundary in a chosen positive direc-
tion; g, is the component of the velocity of the boundary in the direction of its normul, taken
as positive when directed toward the side that lies on the left as the boundary is traced in
the positive direction; compare Figure 166a. If the boundary is at rest, ¢, = 0, hence

dy/ds = 0 and, as hitherto assumed, ¢ is constant.

Figure 166a Figure 1660

Figure 166 — Relations at a moving boundary. See Section 98.

In any given field of irrotational flow, a physical boundary may be supposed inserted
aleng any chosen curve provided the boundary is assumed to move at every point as is ve-
quired by Equation [99a]; the flow will then ke undisturbed by the insertion of the boundary.
In this way the flow around moving boundaries of many forms can be fotand.

If the boundary moves in translation, an a'ternative procedure is the familiar one of
first solving the problem witii the boundary at rest and then imposing an additionai uniform

velocity upon everything. A more useful application of Equation [99a] is to rotating
cylinders.
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If a rigid cylinder of any shape rotetes at angular velocity « about an axis parallei to
its generators, the velocity of its : urface at any point distant & from the axis has a magnitude

g = w & and is directed at right angles to the radius. Hence, by similar triangles, as illustreted
in Figure 166b,

where da is the increment of & corresponding to ds. Using this value of ¢y, and Equation
[99al,

) da ~
dy =ds — =0d — ds= owda,
as ds
whence
)
¥~ Ky 0o =C f99b)

after integrating. Or, if the origin is taken on the axis, so that &2 = z% + %,
1 2, .2
Y- 5 © (z* + y¥°) = C = ceustant. [99¢]

If any known stream function is inserted for ¢ in this equation and any chosen value of
C, the equation defines a certain curve. A rigid cylinder or shell may be inserted along this
curve; then ¢ and the associated potential ¢ will represent a possible flow around the cylinder,
or inside the sitell, when it is rotating at angular velocity » about the axis from which @ is
measured.

The vslocity of the fluid relative to the cylinder or shell, or relative to axes rotating
with it, may be of interest. Let ¢,, ¢, vy denole components of the velocity in the direc-
tions of cylindrical coordinates 2z, @, 9, where tac axis of z is drawn along the axis of rotation
and the angle 0 is measured around it in the positive direction of rotation; and let ¢/, ¢, ¢g
denote the corresponding conponents of tho reiative velocity. Then any point sharing in the
rotation has a velocity @& in the divection of g4. Hence

7.=4, 95=45> 9g=1g- 0B [99d, e, 1)

(See Reference 1, Art. 71, 72.)
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100. ROTATING CHANNEL

Consider the channel between two parallel plane walls of infinite extent whick ire

rotating at velocity w ebout an axis drawn parallel o the walls. Let there bo ro component
of the fluid velocity in the direction of the axis. The walis will be represented on the zy-plane

; by two parallel lines; let these lie at distances a, “om the axis of rotation. Take the
' origin on the axis of rotation, and draw the z-sxis . ~dicular to the walls, as in Figure 167.
i y
\
(Fluid)
w
A :
NP

velocity are

/

Figure 167 — A channel or infinitc box in rotation. See Section 100.

Then the equation of either wall will be of the form, « = constant. It follows that in
Equation [(99¢] y must cancel out. This condition is met if

Y= - —;i (22 - y%) + Az (100a]

where 4 is an arbitrary constant. This is a permissible form for ¢, since the last tern repre-
sents uniform motion at velocity 4 toward positive y, and the first term is adapted from
Equation [36e]. Using also Equation {36d], the corresponding potential and components of

p=way~Ay, u=-o0y, v=-wz+ A (100b, c,d]
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Since the velceicy of a point rotating with the walls tas _omponents
U=- Y v=n,

the velocity of the fluid relative to the walls has components, taken in the instantancous
directions of the rotating axes,

=0, v=-20x+ 4.

Thus in the relative moticn the Ivr »x « ¢ flow are straight and parallel to the walls.
The constan. A is connecwd with the total fiuw through the channel; the volume passing
per second relativeiy lo the walls, per unit of length perpendicular to the planes cf flow, is

a

2
Q= f v’de = (a, ~ a,) [4 - o (a; + c,)l.

4

The relative velocity varies linearly from one wall to the other; it may vanish on an

intermediate plane and have opposite directions near the two walls; see Reference 10, page 79.

101. ROTATING ANGLE

Consider the irrotational two-dimensional motion of the fluid in an angular space formed
by two semi-infinite plane walls meeting at a fixed angle 2a. Let the walls rotate at constant
velocity  about their line of intersection. With the origin taken on this line and the z-axis
drawn along the bisector of the angle, the walls will be represented on the zy-plane by two
radii drawn from the origin at 0 = 2o, where 0 =tar™! (y/2).

The following assumption, suggested by the conjvgate flow of Section 36, will be found
to satisfy Equation [99b] on the walls, with C = 0, since here @ = r:

1 sin 2 8 % cos 2 0
2 2
=~— @t — = —— —_— [101a,b)
¢ 2 @ cos 2¢ 2 @r cos 2¢ ’
Then
sin 2 0 cos 2 ¢ || r
= = - — = N 101c,d,e
7= @7 s 2a ' 10°% osga ' 17 Cos 2a [ »drel
For the velocity relative to the walls, by Equations [2%e, 1],
sin 2 6 (co-, 26 )
‘zwp ——— Sz wr | ~1] . 101f, g]
& =@ cos 2a ' 99 =« cos L : '8
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If, as will be assumed, « < 7/4, g, has the same sign as has the product w; the fluid
thus flows inward or toward the axis along the trailing wall of the angle and outward along
the leading wall. This is illustrated by Figure 168, in which ralative streamlines are shown
for a = 9 deg. If a> /4, the flow pattern is more complicated, Lut such cases are of little

practical interest. If a = 7,4, cos 2a = 0 and irrotutional motion is impossible, in the ideal
case in which the walls extend to infinity. ’

Figure 168 — Streamlines for the motion of fluid relative to the walls
in a rotating angle. (Copied from Reference 10.)

The pressure in the fluid, from Equation [11d], is

cos 2 ¢ 1
p=p a_)2 r2 ( -1 + ’po. [101h]
cos 2a 9 cos? 2

The_ flow within the angle can he generalized by adding one or more terms of the
following form, derivable from a complex potential

w=imz(2n+1)rr/2a:

{(2n+1) —”- 70 |
¢, =-4,r 2@ gin [(2n+1) ZJ’
(2 il
n+1) — g
p=A4 r 28 ¢cos [(271 +1) %—], {101i,j]
a

where n is any positive integer and .i_ is an arbitrary real constant. The corresponding

contribution to gy vanishes at 6 = t &, so that the boundary condition, gg = or, remains
satisfied.
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Rotation Combined with Qutflow

With reference to applications in turbine theory, it is of interest t» imagu * a "ne
source to exist along the apex of the rotating angle. By the principal of superposition, the
source adds a radial component of velocity A/r where A is a constant, so that, in place of
Equation [101c) or Equation [101f],

’

9, =9, = or

; [101k]

qg and ¢, are unchanged. A volume 2a 4 of fluid flows outward through the angle, per
second and per unit of length perpendicular to the planes of motion.

A stagnation line now occurs on one face of the angle, on the rear face if » and 4
have the same sign, at r = r; = (4/w tan 2a Y/2, Where r < ) g, has everywhere the same
sign, but beyond this point reversal of the radial velocity occurs from one side of the angie
to the other, as it doez in the absernce of outflow. As rincreases, the outflowing fluid that
has come from the source becomes crowded more and more against the leading wall of the
angle. If A4 <0, there is a line sink on the axis, and the fluid that is destined to be absorbed
by it is crowded against the trailing edge. The streamlines are illustrated in Figure 169.

(For notation and method; see Section 34; Reference 10, page 94)

Figure 169 — Streamlines for the motion of fluid relative to the walls
in a rotating angle containing a line source at its apex,
i.e., on the axis of rotation.
(Copiei from Reference 10.)

102. FLUID WITHIN A ROTATING SECTOR

Consider the fluid within a vessel whose section has the form of a circular sector of
radius a and aperture 2« ; let it rotate at angular velocity o about its edge, or about the apex
of the sector; see Figure 170.

This problem differs from the last in the additional boundary condition that ¢, = 0 at
r = a, where r denotes distance from the axiz. The solution can be constructed by adding to
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Figrre 170a Figure 170b

Figure 170 ~ 1wo sector-shaped cylindrical profiles. See Section 102.

Equatior: {1012, b] a Fourier seties composed of terms of the form of Fquation [101i, j] and
giving suitable values to the coefficient 4.
Assume that

- (2n+1) Z
s 1 ,sin2¢0 2 Z 4 r 20 (@n+1) rr0-] [102a]
= —— QP ———— _ wa — sin | (2n+1)— 1|, a
2 cos 24 @ n+l) 4 2a

)

where 0 is measured as before from the bisector of the apical angle. Then, to make
q,=(~0d¢/9r)=0atr=a,

0 sin 2 0 °°‘l 3 1 w 2 in| @ 1) 70
= wa — + Wa n + —— sSin n+ - .
©% Cos 2a @ Z.l . 2a 2% 2a
n=9

To find 4,, , {» multiply through by sin [(2% + 1) 70/2¢] and integrate from 6 = -a t0 0 =q.
It is found that, replacing & by n,

32 2
A s1 =(__1)n+l

. (102b]
7@n+1)[(2n+1)? #* - 16 02]

The complete Fourier series would include also terms containing cos [(2a+1)70/2a], but if
these are included their coefficients are at once seen to be zero because of symmetry.
The corresponding expression for ¢ is

i
0o (2n+1) ——

20
9 C0s 20 2 r 0
¥ =3 . o e Ay s - cos (2n+1)-2—a— . [102¢]
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The relative motion in a group of three such scctor-shaped cylinders rotating about their
common edge is shown in Figure 171.

\

Figure 171 — Streamlines for the motion of
fluid relative to the walls within a
threcfold sector-form cylinder

rotating about its apex.
See Section 102.
(Copied from

’@ Reference 1C.)

If @ =n/4 or3n/4, cos 2a = 0; but then, also, either the first or second 4 be-

2n4+1
comes infinite. To handle such cases, a modified formula must be developed by seeking the
limit forms that ¢ and ¢ take on as « approaches the value stated.

In Equation [17d] for the kinetic energy, or T, = (1/2)p [¢ ¢, ds, along the side at

= - g, g, = @, ds = dr, and, since sin [(2n + 1)n/2] = (-1)",

Q2n+1y .~
2a

|~

r
$=¢_, = wrltan 20 + wa® I (-1)" T P (_a)

On the other side, where 0 = +a, ¢ and ¢, are both reversed in sign, hence the integral has
the same value as on the first side. Finally, over the curved end ¢, = 0. Hence the kinetic
energy per unit length is Ty = pw [* $_  r dr, or, after integrating,

0

- ~1
T, =p w?a’ L tan 2¢ + 2 (-1)" | (2n + 1) Z 42 A [102d]
1 8 0 2a 2n+1

A semicircle is obtained if a = n/2; it is revolving about the central line of its base,
as in Figure 170b. In this case, since (-1)2" = 1, using Equation [102b},
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1, . 8
nedpua )
" == (2n+3) 2n+1) [4 - 2n+1)?)

pwlct \:‘:'1 1 4 3 4

= - + - -
dn LO-J 29n-1 21+l 2n+3  (2n+3)°

Of the four series into which the last sum may be broken up, the terms of the first three cancel

each other except for one term out of the second, which equals 4. Furthermore

o0

1 AR U 7’
e R L ot
= (2n+3)° 12 3% 5 8

see Carslaw’s Fourier Series,!” 3d ed. (1930), p. 235. Hence

”w

: 1 1
T =— pate?[ — - —|=0.1553 a*| — 2] w4, 102e
=g Pee = 73 |5 mpa” o [102¢]

(4.2 Reference 1, Article 72; Reference 10, page 102.)

103. MOTION W! "HIN A ROTATING TRIANGULAR PRISM.

If
w=¢ +ip =i423, z=ref {103a, k]
then
=-Ar35in360, Yy=Arcos3 8, (103¢c,d]
or
g =A@ -3 zy?)
from

z3=(a:+iy)3, where z=rcos 8, y=rsind. -

Substituting for ¢ in Equation [99c],

1 2
A3 -3 a:yz)——; w(r° + y2)=0.

<~

This is satisfied for all values of y if 2 = ¢ and

A ]

1
3Aa+-§ o=0.

253

= . ——————

B I gem———

A e ot e S ot




— o e

Hence, il these equations hold, the line &£ - « may form part of a rotating boundary. Since it is
evident from Equation [103c,d] that everything repeats when 0 is increased by 120 deg or 240
deg, two other similar lines must exist. These three lines will eaclose an equilateral trianglo
centered at the origin.

Substituting for A4 in Equation {103¢,d],

O3 © 3
¢=— r’sind0, ¢Y=- — r’cos 3 0 {103e,f]
ba ba
whence
w w
q,---;a—r sin 3 0, qo——)—a'rzcoo30 qg= l(‘;‘ . (103g,h,i]

These formulas represent the flow inside a vessel in the form of an equilateral triangular
prism, rotating with angular velocity about an axis parallel to its length and passing through
the ceuter of its section. The vertices are at r = 2a and ¢ = 60 deg, 180 deg, and 300 deg;
the sides are of length s = 2(2a cos 30°) or 5 = 2/32. The instantancous streamlines are
illustrated in Wigure 172,

The pressure p, when w is constant, is
given by Equation [11¢] with @ = r or, using
Equations [103h,i],

2

pw
p=-
8 a2

* +4ardcos 30+ Po)

(1031

The kinetic energy of the fluid per unit

length is ’
( ! 1 4 2
“ [//l/////, / ')—Pffq 80\/ ps w’.

[103Kk]
mﬁ"
Figure 172 — Absolute streamlines for (For notatior and method: see Section 34;
fluid within a triangular prism Reference 1, Article 7Z; Reflerence 2, Section
rotating about its axis. 9.72.)
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104. TWO COAXIAL CYLINDERS.

In the flow described at the end of Section 67, at any given value of r such as r = b the
radial velocity veries with 0 in the same way as does the normal component of the velocity of
a moving circular cylinder. Let such a cylinder, of radius &, be inserted with its axis at the
origin, and let it move perpendicularly to its axis with a velocity V toward 0 = 0 wkere

(12

V=U|-1+—]. [104a)
b2

Then the surface of the cylinder and the fluid have the same radial component of velocity, so
that the necessary boundary condition is satisfied at the surface of the cylinder.

Assume that @ > b, Then the formulas of Section 67 will represent the flow between
two coaxial cylinders of which the outer, of radius a, is stationary. After substituting from

Equation [104a] for U in terms of V, Equations [67b,c,i,j] give for the motion of the fluid
between the cylinders

b2 v a? 52 v a*\ |
¢ = r+ —|cos 0, Y= £ = — |5 0, [104[), cl
a2~ 2 r a2~ 2 r
82v [ a? 82 v [ a? .
g,= ——— [— -1] cos 8, gg= — +1] sin 6. {104d,e]
a?-p% \ 72 A-p?\ 2

In Equation [17d] for the kinetic energy, the contribution of the outer boundary at r=a

vanishes, since g, = 0. Hence the kinetic energy of the fluid per unit length of the cylirders,
at the instant at which they ere coaxial, is

2n

1 1 2 @
Tl=§p ¢qnd8=?pf ¢qrbd0=-§ ﬂpb
¢}

a

2 2

—

E)

2 _p?

ER (1041
~

after substituting the values of ¢ and g, with r = b and integrating.

105. FLUID WITHIN A ROTATING SHELL OF ELLIPTIC OR OTHER SHAPE

If Equation [29¢] in Sectior 9¢ «s to represent an ellipse, ¢ must be a quadratic function
of z and y. Consider, therefore,

w=g+ip=id2? =id(x+iy)?, &=~24zy, ¥=A~%.
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Substituting for ¢ in Equation [99c],
A@? -y - = @+ Py =C.

This can be written

TS ) 2¢ ) 2¢

a? p? N w-24 w+24

3

[105a,b,c]

~

'These equations represent a real ellipse with semaxes ¢ and & prov ded 2 < 0, |4| < w/2.

Substituting for 4 in terms of w, a?, and 2,

a? - b2

1
¢=-mkzy,l/l=—2—wk(a:2—y2), k= (105d,e,f]

a? + b2

These formulas represent the flow inside a cylindrical shell whose cross sectic: is an
ellipse of semiaxes a and b, when it is rotating at angular velocity w about its axis, on which
the origin of .oordinates has been taken. The coordinate axes must be allowed to rotate with
the shell, but all velociiies are referred to a fixed frame of reference. The streamlines are
rectangular hype-bolas. They are illustrated in the interior of the heavy ellipse’\drawn in
Figure 173, which may be taken to represent half of the symmetrical shell.

y

\

Figure 173 — The heavy ell.pse may represent half of the contour of an elliptic cylinder that
is rotating about its axis ..nd producing =treamlines represented by the solid curves, or
half of an elliptic shell rotating similarly and producing streamlines in the contained
fluid represented by the broken curves. See Section 106.
{Copied from Reference 174.)

\
1
1
a’
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In terms of cylindricul coordinates & 4 such that 2 = @ cos 6, ¥ = @ sin 0,

1 1
¢=--2—mk’&')zsin20, == wk &% cos 2 0; 1105g, h]

kence
gy =@k Bsin20, gg=wkd cos? 6, (1051, j]
q=lolk @. [105K]
At the end of the mincr axis, 0= 7/2, ¢~ =0, g9 = - 0k @, so that the fluid is circulating
backwards. At the end of the major axis, 0 = 0, g9 = w &£ @; but the velocity of the shell is
® @ and so exceeds g, since k£ < 1. Thus relutively to the shell the fluid circulates in the

opposite direction, in order to keep its motion irrotational in space.
The pressure at any point, if the rotaticn is steady, is, from Equation [11c],

2, ~2 1
p=pw‘ka |cos20- Py k)] + constant. [1051]
The kinetic energy of the fluid, per unit length of the cylinder, is

1
Tl='2—P‘/“/;2dxd3/a

where the houndary of the region of integration is the ellipse defined by Equation [105a).
Substituting 2 = a2, y = dby’, and the value of g,

T, == pabo? sz_/(a2 22+ 82 y°?) de’ dy’,

o[ =

and the region of integration for 2’ and y’is now a circle of unit radius. Changing to polar
coordinates so that 2’ = r cos 6, and replacing dz’ dy” by r dr d6,

1 2n
¥yt dz’ dy’ = [z'z dz’dy’ = 3 dr cos? 6d6 = .
J o o *

Hence

T, = -g— o k2 ab (a? + b?) 2. [105m)
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If the fluid rotated as = rigid be<ly, T, would be npab (@ + b?) w?/8.

For the elliptic shell; see Reference 1, Articles 71, 72. A shell whose cross section
is an elliptic quadrant was studied by Sen,!”! one composed of arcs and lines, by Ghose.!72

(For notation and method; see Section 34.)

106. ROTATION OF ELLIPTIC CYLINDER OR LAMINA.

A transformation that yields a quadratic stream function with the fluid at rest at infinity

is that of Section 84 with I" = 0 or, after a slight change of notation,
w=1i Ae'z‘:, 2z = ¢ cosh ¢, (1064, b]

where 2 = z + iy, { = £ + in and the elliptic coordinates £ and 5 on the z-plane are described
in Section 82. Here € > 0 and 7 is multiple valued like an angle. The ellipse for a given
£ has semiaxes a’, 6’ such that

a’=ccosh & b’=csinhé, a’+ b= ccf, c=va’?-5%, €106c,d,e, ]
z=ccosh £cosnp=a’cos p, y=csinh sing=2>0"siny. [£06g,h]
Fromw=¢ + iy
¢ = Ae28 sin 29, ¢ = Ae~26 cos 2 7 {106i,j)

From Equation [106g, h] and a hyperbolic formula in Section 32, 2% + y? = (c%/2) (cosh 2 & +
cns 27); substitution for 2% + y2 in Equation [99¢] gives

2
c
K.;J/ Ae~28 cos 2 -7 e (cosh £+ cos 2p)=C. {(106k]

2
This cquation is seiisfied for any value of 5 provided & = £, = conStant and

2 £ 2
c -2 c
C=-—4' wcosh2&), Ae °°=Tm.

Thus for this particular value of C the curve defined by Equation [106k] degenerstos .ato the
ellipse defined by £ = ‘fo‘ Its semiaxes a, b are such that, by Equation [106e,f]},

3

a+ b=ce¢°, c=va? - b2 {1061, m]
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Eliminating 4 and £,

w = —;— w (a+ ) e’zg, [106n]

¢ =— (a+8)2 e 2 sin 2y, - (a + b)? e cos 2 1. (1060, p]
4 ¥y

From Equations [82s,t,u] the components of velocity, in directions given by Equations

[820, p], are
_w (a + b)? —2f oo e (a + b)? -2 105 9 (106q, r}
Ty g ¢ SNEM BTty g o TR b
1 1/2
G = (sinh? £ + sin? ;7)1/2 =13 (cosh 2 £ ~cos 2 p) . (106s]

At large distances from the origin, ¢ is large and cosh £ = sinh £= eé/2, nearly, so
that 22 + y? = c? 62§/4. Thus ¢ vanishes in proportion to («? + y")’3/2.
On the 2-axis, cos g =% 1, z=% ¢ cosh £ and u =% g¢ =0, while v has the opposite

sign to that of 2 and is, since 28 = (cosh £ + sinh &72,
5 1
v=t 2y = ?—:—(a - b) (a+ 8)% [Va? - % (J2| + Va? - ¢?)] (106t}

On the y-axis,sing=%1, y=%c¢sinh & and v =% g¢ = 0, while u has a sign opposite to
that of y and is

® 2.1 N
u=Fg,=F—(a-b)e+ VYt syl + VP + ¥ ) - {106u]
¢

The formulas represent the flow around an elliptical cylinder of cross-sectional
semiaxes a and b, rotating about its axis at angular velocity o, in fluid that is at rest at
infinity. The origin lies on the axis of rotation, and the axes rotate with the cvlinder. The
velocities as given refer, however, to fixed axes; it may be supposed that the axes are
momentarily stationary in their instantaneous positions.

The streamlines for ¢ = 0 correspond to n = £ 45° or * 135° arga‘b easily seen to be
asymptotic to the radii y = £ 2. These streamlines separate those that cross the » axis at
their outer extremities from those that cross the y-axis.
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On: e c linder £ = £, and, from Equations (1061, m,o0, pl,

¢ =

-t.le

(a2 - 6%)sin 2, ¢ = i‘i (a? - b%) cos 2 1. [106v,w]

The flow ne! s the same for all confocal cylinders; the values of ¢ and ¢ at corre-
sponding points are proportional to (a + )%, For, the values of £and 5 ata given point in
space depend only on the locations of the foci, and in particular upon c.

If 4 - 0, the ellipsoid becomes a lamina of width 2.

axis. On its surface € =0, y = 0, « = @ cos » and

2a, rotating about its median

u=T Iy = [106x,y]

Herc « 'e upper sign refers to the face toward positive y, the lower sign to the other face, and
w is positive as usual for rotation from = toward y. Thus u=0at o = x a./ﬁ

Streamlines for equally spaced ¢ are shown around the elliptical cylinder @b in
Figure 173. The curves inside the ellipse are to be disregarded in this connection. The
fluid is at rest relative to the cylinder at points o and 7. The curve ¢”b“represents a con-
focal cylinder that would give rise to the same streamlines at external points. The flow net
for a lamina is illustrated in Figure 174. The streamlines differ in appearance in the two
cases only because different spacings of ¢ were chosen.

Figure 174 — Flow net produced by a plane lamina rotating about its median line.
(Copied from Reference 10.)
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The kinetic energy of the fluid per unit length of the cylinder is, from Equations
[106v, w] and Equation [17d],

27

2
2 7 2
T, = % (a® - b?) f sin? 2pdn = 1—: (a® - b)) w2 [1062)
0
For a lamina (b = 0)
1
T, = T w? at, [106a ]

Circulation I" about the eylinder or lamina can be included by adding the same terms
containing I" as in Section 84.

Combined Translation and Rotation, or Rotation about Other Axes.

Any two-dimensional motiun of the cylinder or lamina perpendicular to its generators
can be resolved into a motion of translation and a rotation about its axis. Such a motion can
also be regarded as a pure motion of rotation about some other axis. The corresponding
expressions for ¢ and ¢ can be constructed by adding those for the component motions, with
or without circulation; and the velocity can be found by adding the two velocities vectorially.

In the case I' = 0, when the kinetic energy is calculated by substituting the combined
¢ and ¢, as obtained from Equations (106v,w] and from Equations [84b,c] with £ = £y in
Equation (17d] or in T, = ~ (p/2) fpdi}, the same terms in U? and o? are obtained as before,
and in addition a product term in wU. The latter contains, besides constants, the integral

fz” {-2(b cosa cos 5 + @ sin a sin p) sin 2 5 + cos 2 5(~ b cos a sin p + @ sin a cos p)idy.
()}

This integral, however, equals zero. Hence the kinetic en'.rgies of translation and of rctation
are simply additive; their sum is the total energy.

As an example, if a lamina of width 2u is rotating at angular velocity o about an axis
lying in its plane, parallel to its edges but displaced a distance Ba from its median line, the
translation to be udded is one perpendicuiar to its plane at velocity U = Law. Hence, from

Equation [841] with & = 7/2 and Equation [106z], the total kinetic encrgy of the fluid per unit
length of the lamina is

1+8ﬁ2 4 2

1 = _IG——_ ﬂp a w”. [1061)']

Streamlines for this case are shown in Figure 175.
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Figure 175 — Streamlines produced by a plane lamina rotating sbout one edge.
,Copied from Reference 10.)

The pressure can be found from Equation [11¢] or {11d].

A lamina bent sharply along its median line was studied by Sona.!73

(For notation and method; see Sectien 34; Reference 1, Article 72; Reference 2,
Section 9.65; Zahm!74 and Consiglio.”s

CHANNELS

107. FLOW PAST A SQUARE END OR AN OFFSET

Let a stream of fluid, havirg a uniform velocity U at infinity, flow past an obstacle
in the form of a two-dimensional semi-infinite rectangular box; let the box have a face of
width 24 perpendicular to U and two other faces extending to infinity in the direction of U,
as illustrated in cross section in Figure 176, on the z-plane.

Let the z-axis be taken in the median plane of the obstacle with the origin on its front
face. Then it. is obviocus from symmetry that a strcamline follows the z-axis to the box,
divides, and proceeds to infinity along both sides of the box.

It suffices to determine the flow above the z-axis; that below it is then the mirror
image in the axis of the flow above. A rigid boundary could, in fact, be inserted along the
z-axis to the right of the box without disturbing the flow. Thus either half of the flow will
serve also to represent the flow past a plene wall with an offset in it of width A.

The bounding streamline COBA constitutes an infinite polygon and can be transformed
into the real axis of a new variable ¢ by the Schwarz-Christoffel method. The streamline

must be traced in the direction ABOC to make the area above it correspond to that above the
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Figure 176 — A semi-infinite obstacle 4
AB B° A’ or an offset in an
infinit* wall ABOC. £
B 0
t=-1 t=]

real ¢ axis. Then the exterior angle at B is —=7/2 and at 0 is +#/2. The values of ¢ at these
two points can be chosen arbitrarily as -1 and +1. Then, in Equation [31a] of Section 31,

e =-la, =-1/250e,=1,a, = 1/2; heace Equation {31a] becomes in the present case

dz
— =X+ 1)V -1)"12 [107a)
dt

Integrating,

z=RUP -1V s+ (2 -1+ L.

To fix the amplitudes, assume that, for the values of ¢ required, 0 < amp ¢ < 7. Then amp

(¢ + 1) and amp (¢ - 1) can be understood to lie in the same range, so that amp (¢2 = 1) will
range from 0 to 2, and amp (¢% - 1)'/2 frem 0 to = Then, to preserve continuity, for negative
real ¢<=~1, (¢ - 1)”2 ==t?2-1<0. Also, 0 <amp ¢+ (& - 1)1/2] < =, for use in de-
fining the logarithm.

The constants K and L are chosen so as tomake t=~1 4t Borz=1¢h and £ =1 at
z2=0:

th=Klog(-1)+L =inK+L:G=0+1L.
Hence L = 0, K = &/ and

z= f—- (2 -2+ In [+ (£ - 1)), {107b)
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The flow on the z-plane is thus transformed into a flow on the ¢-plane in which the
real axis is a streamline. A possible complex potential for such flow is w = e¢. With this
potential, as ¢ - =, so that (-2 . tand predominates over the logarithm, 2 » A¢/7 and

w =~ cl - cnz, ke But the assumed flow at infinity requires that on the z-plane w -+ Uz. Hence
¢=hl/n, and

W= +ig= — ¢, [107cl

By substitution, z can easily be expressed in terms of w, but ¢ and 4 cannot be separated
in terms of ordinary functions.

The relation between w and z is more conveniently studied in terms of real coordinates
t, v on the z-plane defined by writing

¢t = cosh (u + iv). (107d]

Using hyperbolic formulas iisted in Sectiun 32, and also separating real and imaginary parts in
z =2+ tyand in w, it is found that

2 = — [p + iv + sinh (g + ¢ V)], [107e]
n
h _ h ,
z = — (u + sinh p cos v), y = — (v + cosh p sin v), [107¢, gl
n o
AU [/ , ,
¢ = — cosh g cos v, ¥ = — sinh psinv). (107h,i]
m

The coordinates p, v are single valued withir the region of interest provided 0 < g,
0 < v < m Atinfinity, p » «, sinh g » cosh y, p/sinh u » 0, and ¢ » Jz, as it must. The
ceordinate curves on which g has a constant, positive value begin on the positive z-axs,
where v = 0, cross the y-axis, and end on the line AB, or wh'zh v = #, y = k. The curve for
p = 0 is the segment 0B.

Some streamlines are shown in Figure 177. The point on OB at which ¢ = |U], or
v=a/2 y=(2+ YA 22 = 0.818A, is marked by a shortline.

The line COBA is the streamline for ¢ = 0. As the strearlines proceed from right to
left, they all rise through a total distance A.

From Equation [107a], and Equation (107c] and K = A/,

()" (/2 2
dz dt/ dt t+1
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Figure 177 - Streamlines for the situation in Figure 176.
See Sectior 107.

and, from Equation [107d] and hyperbolic formulas listed in Section 32,

- ) . 1/2
, |dw 2 v? (cosh y cos v ~ 1)? + sinh? y sin? »
" = - =
dz (cosh p cos v + 1)? + sinh? g sin? v

or

cosh u - cos
q2 = U2 SRR . (107}
cosh pt + cos v

On the positive z-axis, p2 0, v =0, ¢ = |u| and
koo i
2= — (sinh p+p), u=-~Utanh 5 (107k,1]
” [y

On the end OB of the obstacle, where p=0,0< v <7, g=|v| and

A v
y=— (sin u+u);v=Utan§ . (107m,n]

7

on the face AB, p20,y=v=n,¢=|y and

Ao K
=~ —(sinh p - p), u =~ 0 coth — . {1070, pl
w

&«

These velocities are most easily calculated thus: on OB, for example, dy = (/%) (cos v+1)dy,
d ¢ =~ (hU/n) sin vdv, hence v = -~ d¢/dy = - U sin v/(cos v + 1) = - U tan (+/2).

If the total force on OB is calenlated by integrating the Bernoulli pressure and evalu-
ating the improper integral in the usual way, the force is found to be zero provided the pres-
sure in the undisturbed stream is zero. This result is correct, as will be shown in the next
section. It is unsafe, however, to integrate the pressure up to a point at which g+ e; see
Section 85.

(For notation and method; see Section 34; Reference 2, Section 10.6.)
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108. STRAIGHT CHANNEL VARIED IN WIDTH.

Consider the flow along a two-dimensional channel of infinite length which has parallel
straight sides but whose width undergoes a sudden change at one point from 4, to hy, as illus-
trated in Figure 178. Let the fluid approach from the right at uniform speed U. Then its »eloc-
ity will ultimately become uniform again at the value %, U/h,, since the same volume must
pass all cross sections.

2 y
B A
-‘H—.A[ ' l
—~permme == [/ 2 -
4 v
-—— 2 ‘ 1
: |
z F
L
r
(3
A B,C D £ F
-—oe fil 1 a oo

Figure 178 — Treatment of a straight channel abruptly varied in width.
See Section 108.

The mathematical problem is an extension of that in the last section. The walls taken
togetaer in the order ABCDEF as labeled in Figure 178 can be regarded as an infinite polygon
with two vertices at infinity, AF and BC. At BC, where a change in direction of # occurs,
let ¢ = 0; at D and E, with exterior angles —n/2 and n/2, let £=1 and ¢ = a > 1, respectively.
Then t".e Schwarz-Christoffel kquation [31a) becomes

d Kfe¢-1\1/2
:172:.;(‘ a) , (108a)
266

o g et G W




.

Integrating by means of the substitution

toa\1/2 1\ 172 1172
T =( a) =(1+ 2 ) = [a- (@-1) ] , {108b]
t-1 1~ t-1
1+ 1 va-r
=K {1 — In = L 108
2 (n Tt n\/z+‘r)+ (108c]

Here it can be assumed that the amplitudes of ¢, £ - 1, ¢ - a, and hence also of (¢ - a)/(¢ - 1)
range only from 0 to =, inclusively, those of ¥, 1 + T an¢ @ + ¢ from 0 to n/2, and those of
1 -7 and Va- rfrom-=zto0.

As ¢+ o, T 4 1; hence the real part of z becomes infinite. Thus ¢ = = at F and
t = - = at A, since ¢ increases from 4 to B. Thus, on the ¢-plane the streamline AB becomes
the negative real axis, the line CDEF, the positive real axis. Since the flow is toward BC,
the transformed flow on the ¢-plane must be one of convergence toward ¢ = 0. The simplest
type of such convergent flow is that due to & line sink at ¢ = 0, for which the complex potential
may be written

w=clnt¢, {108d]

from Section 40, where w = ¢ + ¢y and c is a real constant.

To fix the constants, take the z-axis parallel to the channel. Then, to provide the
assumed inflow at AF, it is n. ces=ary that at AF w~ Uz + constant or dw/dz » L ; see
Section 35. But

dw dw/dz cft-a\l/? [108e]
dz dtfat  K\te-1] ° °
When |¢| is large, the las: fraction becomes unity. Hence it is necesaary that
c
i v. (108f}

As BC or ¢ = 0 is approached, dw/dz must reduce similarly to 4, U/A,. Hence, from
Equation [108e],

MU

_”2— = 7 va. (108g]

The fact that it is thus obviously possibls to make the solution represent the assumed

flow in distant parts of the channel confirms the choice of u as a function of ¢.
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Furthermore, if ¢ has a large negative real value, 1 < 7 < \/a; if ¢ is large and positive,
0« 7« 1. Hence, as ¢ changes from a large negative to a large positive real value, all of
the four binomials whose logarithms occur in Equation {108¢] remain real, but 1 - = changes
from negative to positive, and its amplitude from ~x to 0. The imaginary part of 2 is thercby
increased by -7z K. But, on the diagram, 2z changes from A to F'; hence the change in its
imaginary part is also --¢h,. Thus -¢nK = —ék;. From this result and Equations [108f, g}

h kU hl

K':.'—, C = ) a= "
n n
112

{108h,i, j)

Finally, at £ or ¢ = a, + = 0, z = L by Equation [108c]). Hence, if the origin is placed
at E, L = 0. Then, from Equazions {108c], [108h, i, j], [108b] and [108d],

hy = h,r

1 14+ 1 2
z=x+zy=-—(}zlln-—+—-+h21n— : [108K]

7o\ 1-7 hl+h27'

2 nw,(hlU) 5 |i/2
l’hz e - hy

2, Tw/(h Uy
Lhz(e 1772

,yw=¢ ~ig (1081, m]

T =

These equations fix ¢ and ¢ as functions of 2 and y, but their interpretation is involved.
For the velocity, from Equations {108b,e] and Equations [108h,i],

2

=02 t-a

dw
dz

2

¢* = = 0% |72, (108n)

4

On all walls parallel to U, T is real and positive, so that, from Equation [108n],
T=¢/U. On4B,t<0,1< r<Va=h/hionCD,0<t<1, r>\a=h/kyonkEF,
t>a, T <1. Hence, from Equation {108n] and Equation [108k],

on AB:
1 +U lle—lzzq
U<q<h Uk, 2=~ hlln-(-l—+h21n—-—_—- ,
7 qg-U hlU+n2q/
on Cl:

h, U/h Lo 228 a0 f20 7MY
> = - + ————
A A P A R N
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on EF:
hU-4,q

1
<y = - 1 h, In ———
q y T . hlnu_q+ 2nh1U+h29

U+

On DE, 1< ¢ < a, v is imaginary and T = ¢¢/U, and

h
2 q 29
= — (& tan™? = -4 tan~! — |,
y n(l U 2 h U

The force on DE due to the Bernoulli pressure in steady motion is most easily found
from the conservation of momentum. Consider the fluid between two transverse planes drawn
far away from DE and on opposite sides of it.

In a second, the net effect of the motion is the same as if a volume A, U of this fluid
were removed from the neighborhood of the rear plane (at the right) and inserted just ahead
of the forward plane, gaining thereby momentum

2

hl hl
phy U= U-U =ph U — ~1]. (1080)
The momentum in the remainder of the space between the planes is unaltered. During the
same time the difference of pressure between the two planes delivers momentum to the fluid
of mugnitude equal to the differential force multiplied by the time or
h2 h
1 1 1 1 1
—=pUth ~|-=p — U* hy=— ph U} — ~1]. 108
g P70 Y 2= P, (108p]
2

/

The remainder of the gain in momentum must be furnished by a force due to negative pressure
over DE; the reaction is a force of suction on DE, directed oppositely to the stream, of
magnitude equal to Equation [1080] minus Equation [108p] or, per unit of length perpendicular
to the flow,

1 M ;
Fy = — pU? — (h) = hy). [108q}
2 hy

The force F, exceeds the fcrce of suction on an equal area in the approaching stream

1
byAF1=F1—-2—pUz(hl-h2)or
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1, AN .
AF =< pU%(hy - hy) —h—-l) =5 Phal;

hy

/kl - h'z 2
{108r)
2 \

in terms of the exit velocity U, = &, U/h,.

If A, - A, is held constant while &, - =, the case of the 1ast section is reproduced, and
in this case A F| » 0. 1f, on the other hand, A,/A, is very small, AF| = p &, 022/2, approximately.
This is the familiar suction force due to deficit of pressure on the walls of a vessel in the
neighborhood of a relatively small orifice.

By puttir g together two flows of this type, one reversed as if by reflection in the direc-
tion of y, the fiow can be represented through 2 .ane-sided orifice of width 24,, located in
the plane end of a two-dimensional semi-infinite tank whose sides are 24, apart.

The velocity may be reversed at all points withou: affecting ¢ or the geometrical flow
net.

(For notation and method; see Section 34; Reference 2, Section 10.7.)

109. CHANNELS OF YARIOUS FORMS.

Channels with sides variously composed of straight lines, or in part curved, are de-
scribed by LoveS? and Miyadzu;!76 for the introduction of a gate see Reference 177. Channels
with curved walls are described by Sakurai.252
Branching channels are treated in Ruference 2, Section 10.8; see also articles by

Agostinelli,' 78 Cisotti,'”? and Boverio.!8°

FREE STREAMLINES
110. NATURE OF FREC STREAMLINES.

Where a free surface cccurs, as at the top of a mass of liquid or on the boundary of a
region of cavitation, the usual requirement is uniformity of pressure. Problems involving this
boundary condition are oiten difficult to solve.

If the motion is steady, however, and if gravity is absent, constancy of pressure is
equivalent to constancy of ¢, the magnitude of the velocity, as is evident from the Bernoulli
Equation (10d]. Furthermore, in steady motion the free surfacs is composed of streamlines.
Thus in steady motion the boundary condition along a free streamline is that ¢ is constant.
This boundary condition is readily handled.

Alternatively, the space adjacent to the moving fluid, instead of being empty or filled
with gas of negligible density, may be assumed to be filled with fiuid of the same kind but at
reet. The steady motion of the remaining fluid is not thereby affected, provided viscosity is
entirely absent; it suffices to assume that the pressure in the stationary fluid or wake is the
same as the constant pressure along the boundary surface botween the two. At this boundary
the velocity is then discontinuous, and the motion is there rotational; a sheet of vortices may
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be =upposed to exist c. the boundary. The general principles and theorems that hold for
irrotationai motion will hold within the moving fluid taken by itself, but they may not be
applicable throughout a region that includes part of the surface of discontinuity.

The theoretical flow of a frictionless fluid past an cbstacle as obtained on such an
assumption shows more resemblance to the flow of an actual fluid than the theoretical flow in
which the motion is everywhere continuous. In particular, a force is exerted on the obstacle.
But in real cases a great dea’ of vortex motion is observed to exist in tho wake.

In the mathematical theory of two-dimensional motion, constancy of the velecity ¢
implies constancy of |dw/dz| along a free streamline. It is found convenient to work with
the variable

dz

(=~ o’ {110a)

or, in terms of the velocity components u and v,

dw \! 1 u+ v
== [— - - —~ = , {110b]
dz -y + 1Y q2

where the last member is obtained by rationalizing the denominator and using g% = u? + 22

Thus [¢] =1/¢.

Regarded as a function of 2, {(2) effects a transformation from the z-plane onto a
{-plane. Let this plane be drawn parallel to the z-plane and with the real axis of { parallel
to the z-axis. Then the vector representing ¢ has the same direction as the particle velocity
at the corresponding point on the z-plane, since it makes with its real axis the angle
tan™! (v/u). Therein lies the special utility of the variable ¢.

Each streamline »n the z-plane transforms into a curve on the {-plane, and this curve
can be regarded as the corresponding stresmline in a transformed motion. From the properties
of £ it is clear that any straight portion of a 2 streamline will transform into a segment of a
parallel radius from the origin. As the z point traces a curved free streamline, on the other
hand, along which ¢ is corstant, the { point traces the arc of a circle of radius 1/¢, centered
at the origin.

Further transformations may then be made in terms of other variables until the problem
is converted into a form in which the solution can be guessed.

In the alternative ‘‘hodograph method’’ of Prandtl, dw/dz, or —-1/¢, is used as an
auxiliary variakle instead of ¢; see, for example, Betz and Petersohn.! 81

(For notation; see Section 34.)
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111, EFFLUX FROM A TWZ.-DIMENSIONAL ORIFIC:,

Consider the steady irrotational outflow of a liqmid through & parallel-sided slot of
width 2q in the infinite plare wall of a tank. Let gravily be assumed not to act. In Section 61
the problem was solved on the assumption that the liquid remains in contact with the outer
face of the wall. It will now be assumed that the 1ssuing liquid separates from the wall in the
form of a jot bounded on each side by free ~‘reairbnes.

On the z-plane let the slot be represent d by the segment (~a, 0) to (a, 0) of the real
axis, as in Figure 179; and, for simplicity, let the constant velocity along the free streamlines

be g = L.
2 L
1y
(Li o)
4 8 B’ 4 A B’ B 4
- -3 2 a P = -1 ) 1
{.c’h
c ¢ {
J
(2=~iw)
I
LIS N
{
(a~1/2)| l
A
‘ Rt ————— b el ——
{ g ¢ A
C'C,'J ¢
( ) ! Il - o0 -1 1 b
- 1
(a= /D)8 !

Figure 179 ~ Efflux from a two-dimensional orifice. See Section 111.
As explained in the last section, the molion i [irst studied in terms of the variable

4:- _— [111!1]




Along the wall AB the fluid velocity is dirccted toward B and its magnitude ¢ increases from
zero at A, or at infinity, to unity at 8. Hence the ¢ vector, of magnitude 1.7¢, lies on its
positive real axis, and its end moves on the -plane from = when zis at Ato { =1 at B.
Along the curving free streamline BC, ¢ then moves along the unit circle below it resl axis;
the direction of the £ vector is at each point that of the tangent to BC. A sin.ilar streamline
coming from the right transforms into the negative real axis of { from - = to - 1, together with
another part of the unit circle below the axis. Finally, because of the obvious symmetry,
there must be a central streamline /J which is straight throughout and becomes part of the
imaginary axis of ¢.

The boundary ABB’ A’ thus traced on the {-plane, consisting of two segments of the
real axis and a semicircle, is nevt transformed into the entire real axis of another variable ¢.
For this purpose a transformation is first made to a new variable

In¢=1In|]+iamp ¢ [111b]

where In [{] stands for the ordinary real logarithm. This converts the boundary into a semi-
infinite rectangle. AB becomes the positive real axis of In ¢ On the unit circle, In |} = 0
and amp ¢ ranges from 0 to - #; hence the semicircle below the real axis of ¢ becomes the
segmert of the imaginary axis fromIn {=0toin {=-ia. On A’B’ amp { = - in, hence, on
the plane of In ¢, A’B’becomes a line parailel to AB at a distance {# below it.

The Schwarz-Christoffel transformation, discussed in Section 31, is now used to con-
vert the rectangle ABB’A’ on the plane of In { into the real axis of ¢. The space between
AB and A’B’is to be regarded as the interior of the rectangle, since, as the boundary
ABCJC’B”A’ on the :-plane is traced, the fluid lies on the left. Hence exterior angles of
7,2 occur at B and B’ Let the correspording values of ¢ be chosen as ~1 and +1.

Then, putiing @, = - 1, o, = 1/2, @, = 1, &, = 1/2 in Equation (31al,

d
- In {=K@+ 1)y V2@ -1)1/2 [i11c]
and, integrating,
PN 1/2
Iné=KInf{t+ (¢ -1) 14L. (1114)

The croice of amplitudes here is as in Section 107.
The constants & and L can now be adjusted to bring the corner= B and B”into the

correct positis on the plane of In ¢. Inserting into Equation [111d) ¢ = ~ 1 for In { = 0, then
{=1forin (= -im:

0=Kln(=1)+L=inK+L,-iz=L,
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whence K =1 and

1/2
Ind=1Inf¢+ (t2 -1) J-in= cosh™! ¢ - im, {111¢]
2 _1y,}/? L -1
{==t=(-1) "7, t=-= ({4 47h), (1111, g)
. — ) . 172
since ¢~' " = = 1. Here, when ¢ is real and negative, (t2 -1) =~ \t? -1,

Now, as z traces one of the streamlines ABC or A’B’C’, ¢ moves ulong its real axis
from — «, or from + e, toward 0; and ¢ obviously has different values on these two sweam-
lines, which bound a jet of fluid. Hence the flow on the ¢-plane resembles that toward a sink
located at the origin. This fact suggests the following trial assumption as to the complex
potential:

w=clnt, t=e?’c,

where ¢ is real; see Section 40, According to this assumption, the free streamlines extend
up to the point ¢ = 0, or { =~ 1.
Then dw = cdt/t and, from Equation [111a] and Equation [111f], integrating,

1/2
dz=-Cdw=clt+(-1) / ] dt/¢;

172 1
2=_c [t+(12-1) 4 sin™! T:l+k. [111b

1/2
For the significance of (¢* - 1) ~ see Section 107.

i

To evaluate sin™, consider, in general, sin™! 2. Write

sin"lz2=v+ i

whore v and & arereal. Then 2=z + iy = sin (v + i£) = sin v cosh £ + ¢ cos v sinh §

and

z = sin v cosh £, y=cos v sinh & (111i,j)

Thus £ and v serve as clliptic coordinates on the z-plane and can be found for any point;
see Section 82, where 5 = (7,'2) = v.
In analogy with Equations [82¢, f],

1
cosh €= = M+ D2+ 321 P (@ -1+ 417, (111K]
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1
sinv=— {[(z+1)?+ .1/2]”2 ~lz-1)%+ yzll/zi. (1111)
&

On the real axis of 2, where |z] <1, é = 0 and sin™! z = sin™! & = v and has its ordinary

meaning; where || > 1, cos v = 0, # = * cosh £, and £ may have either sign. so that
ife>1,

! ife<-1,

where either sign may be chosen.

The variables v and ¢ are doubly many valued, hence so is sin~!

1

2; as with real angles,
if ono value is sin™! 2 = u, then others are u £ 2 #n where ~ is any integer, and also

) (1 ¥ 27) 7 - v. This complication can be removed only at the expense of introducing discontin-

n
vities. A convenient range for v may be - ry < v < #/2. Using this range, sin™! 2 is dis-

| centinuous along the z-axis where || = cosh £ > 1; there the sign of £ is indeterminate, where-
as elsewhere £ has the cign of y. With this convention, Figure 127 may be used by assuming
that on the plot ¢ =1 and n = (7/2) - v.

'n the present problem the values of 1/¢ lie on or below the real axis. For such values
continuity can be preserved with use of the ranges £ < 0, - 7,2 < v < #/2, provided it is agreed
that, for a real number z, in terms of the positive cosh™! z,

ife>1,
s~ LA -1,
sin™ 2 = >~ icosh™ a3 [111m]
ife<-1,
s
sin™! g == - - cosh™! z. (111n]
AtBoratt=1,z=a;atB,or ¢t =-1, z=-a. Inserting these values in Equation

{111h] and evaluating ¢ and £, it is found that

2a In ¢ (1110, p]
T 94’ Q4 nh P
.7
2a 1/2 i
z= [t+(t2—1) /% 4 sint —J (111q]
Q4+ ¢

Since w = ¢ + i, ¢ and ¢ are now fixed, but they cannot be expressed in terms of z by means
of ordinary functions.
The velocity of the fluid at any point is given by

é 1 172!
° . =[t+(®-1)""1 . f111:]

e

|
g
|




On the free sueamlines ¢ = 1. On the side A’B”of the wall of the tank, ¢ is real and ¢ > 1;
heace '

-1
1/2 1 1 1/2
(1="‘u=[t"([2—1) ] ’[=-—(__+q),(t?-_1) -
q

(S e

Alsu, 2z is real and 2 = x. Thus, from Equation [111q],

[111s)
where sin™! is in the first quadrant. The side A’B”is symmetrical to AB
Along the median plane, or I/ in Figure 179,

‘ 1/2 1/2
t=djt, (-1 T=i(d?+1) .
Thus

-1
1/2
g=~v=0+0d?+1) )

iel =(l -q)/ﬁ, (122 + 1)”2 =(-1— b q)/ﬂ-
q q

Also, if s = sin™! (1/¢) = sin™! (1/3 |¢], then 1/;¢] = i sin s = sinh (is), hence s =- ¢ sinh™!
(1/1¢]). Finally, z = iy. Hence, from Equation [111q].

2 1 2
y= — -sim~t =L | . (1111)
2+7 | ¢q 1- q2

and

In describing the form of the free streamlines, a more convenient parameter than ¢ is
the angle 9, actually negative, between the z-axis and the tangent to the streamline; and a

fresh integration is less troublesome, because of the singularity at ¢ = 0. On a frece streamline

. 1
l=¢0 cos 0= = (+¢ ==t [111n,v]

Hence, using Equations {111a] and [111p],
9

2a . sin @
dz = dr v idy =~ { dw = (cos 0 + i sin §) —— d6,
2 cos 0

s+ n




Separating dr and dy and integrating along the left-hand streamline,

a .
z=- (7 + 2 cos 0), {111w]
24
2a /1 1 .
y= Intan{— 7 +— 0] -sin0|. [111x]
24 4 2
n
Here - < s 0 < 0. The right-hand streamline is then the mirror image in the y-axis of this
one.
The issuing jet eventually becomes straight; its limiting width is twice the value of
|z} when 0 = - 7,2 or 27 a,/(2 + 7). The ratio of contraction, relative to the width of the orifice

or 2a, is thus

= 0.611.

<+ n

Since the velocity in the ultimate jet is uniform, the volume of fluid that issues per second,
per unit length, is 27 a/(2 + 7).

Thus on the z-plane the streamlines do not converge at infinity, as is indicated by the
distinct labeling C, J, C”in Figure 179, but on the ¢-, In {-, and ¢-plares they converge to a
finite point, asat {=-7or ¢=0.

At 0 = 0, or the edge of the orifice, dy/dz = sin® §/cos 2 0 = 0, but d0/dz = 1/sin 0 » .
Thus, although there is no discontinuity in the siope of the sweamline, its curvature at the
edge is infinite.

The free streamlines are plotted to scale in Figure 179, and an enlarged plot of one
half of the symmetrical diagram is shown in Figure 180.

Figure 180 — Efflux as in Figure 179:
one side of the issuing jet in
more detail. (Copied from
Reference 1.)

Line of Symmetry
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If the velocity along the froe streamlines is made U instead of urity, the only effect is
to replace Equation [111p] by w = 2alU In ¢/(2 + n), and to multiply all velocities by U; ¢ is
then replaced in all formulas by ¢/U. The flow pattern is unaltered. U may be negative, so
that the fluid is entering through the slot.

If p, is the pressure at infinity in the mass of fluid where ¢ = 0, and Py the pressure at
the surfaco of the jot itself, then, from the Bernoulli equation

1 2
P = Pp= 5 PU
This equation fixes U2 when Poo = Pf is given.
In the presence of gravity the velocity is not uniform along the free surface and the
problem is more difficult.
(For notation and method; see Section 34; Reference 1, Article 75, where a is replaced
by (v + 2) &/n; Reference 2, Section 11.53.)

112. TWO.DIMENSICNAL BORDA’S MOUTHPIECE.

The transformations in the last section are easily modified so as to allow the plane
boundaries to be inclined to each other at arny angle, with preservation of the symmetry.
The integratien is simple if the planes are made parallel, so as to form a parallel-sided
mouthpiece enclosing the issuing jet. Let the z-axis be rotated so as to lie in the plane of
symmetry, with the edges of the sides at (0, a), (0, - a), as in Figure 181.

On the {-plane, the boundaries AB, A’B* now coincide and lie on the pasitive real
axis; in the figure they are drawn slightly separated for clarity. If amp { =0 on 48,
amp { = -2nr on A’B" for, on the z-plane the direction of the velocity rotates through a
clockwise angle of 360 deg in passing from AB through the fiuid to A’B’. The ¢ diagram is
the same as before, and Equation [111d] holds again. Substituting in it, first In { = 0 when
t=~1,thenln {=~2nriwhen =1, noting that here In (-1) = 7%, In (0) = 0, and determining
K and L, Equaticn [111d] becomes

1/2
In¢=2Mle+(2-1) " "V-2ni,

whence, since ¢~27% = 1,
2
1/2
=les (-1 1. (112a)
As before,

w=¢+iP=clnt (112b]
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Figure 181 — The two-dimensional Borda’s mouthpiece. See Section 112.
where ¢ is real. Hence, using Equations [111a] and [112a},
dz= - dw=-cio -1+ 2¢(% ~1) ' ) diye,
z2==clt®+ (e - 1)”2 ~Int-1Inlt+ (&% - 1)”2]! + k. (112.1

Here the amplitudes of the algebraic functions of ¢, except ¢ and ¢2 - 1, are confined to the

range from Oton. AtBorz=ia,t=-1;at z=-17q,¢t=1. Hence,
a a |
c=—, k=—-ia f112d,el
Hd 14

The velocity of the flvid at any point, using Equation [112a}, is given by

d i 172,72
I L T e T (1120)
dz 4

By proceeding as in the last section it is found that along the wails AB and A’B’ ¢ = v and

a |l- 14+
m:——[ LA I A [112g]
7 2¢q 29
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whereas, along the median plane or the r-axis, ¢ = ~ v and
a|1l+g 1-q |
PSS I A O Sl | (112h]
b 29 2q J

To trace the upper free streamline, to which the lower ix symmetrical, introduce again

the angle ¢, which is here negative. Then

, 0 9 6 1,
‘:1/22(,5()'2=COS_+ 7 sin — (‘os—:——(cfl’2+/:"”2)=—t,
2 2 2 2 '
)

f , o 0N 0 do

dz=dr+idy--{Ldw=c Cos — + i sin —= Lnn—)—-,
a . ) 0 a . PR
r=—|sin® = -Insec — ), ys —— (0~sin0)+aq, (112i,])

7\ 2 2 2

after integrating and usiang Equation [112d). As 6+ -7, 2 » -~ and y » ¢2. Thus the entire
jet is ultimately only 2 - a or @ wide, and the ratio of contraction is a,"2a = 1,2. The volume
of fluid issuing per second and per unit length is a.

One side of the jet is plotted in Figure 182.

Figure 152 — Borda’s mouthpiece: one side
of the jet. (Copied from Reference 1.3

Line of Symnetty

The <ame remarks hold here as in the last section in repard to the terminal form of the
frec atreamlines, the pressure, the velocity and the effect of gravity.,
(For notation and method see Section 34; Refecence 1, Article 74, where b = a."2;

Reference 2, Section 11.51.)
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113. INFINITELY WIDE STREAM INCIDENT NORMALLY ON A PLANE LAMINA.

Let a steady uniform stream impinge perpendicularly on a fixed plane lamina of breadth
! and continue beyond it with two Irec boundaries; see Figure 183.

From the symmetry, there will be a central streamline which is straight until it meets
the lamina at its center €, then divides and follows the lamina to its edges, from which cach
half continues as a free streamline Al or 4’17 on which the constant velocity will be assumed

to be unity. The poneral method described in Section 110 is applicable, and the mathematical

A 1 ¢
y
i g 4 c’ 4
— - -
g= 1 %\q i
Wake \
1’ I
g B .
4 A ! A c’
I C”' —l l
-in
A’ c’

Figure 183 — Plate in a stream with wake behind it. See Section 113.
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troatment of Section 111 requires only certain changes in order to fit the present case. The
point C is a stagnation point, from which the fluid flows away toward both sides. Hence the
parts Cd and CA’ of the lamina are represented by segments of the real axis of £, as shown
in Figure 183, while the free streamlines follow the unit circle below the real axis as before.
The geowmetrical boundary on the {-plane is thus the same as in Section 111, and the same
transformation from { to ¢ can be used:

1
§=_.d_2 =-5-(t2_1)”2, t_:_?((r%). (113a,b)

dw
Fer the an.plitudes, see Section 107.

The flow on the ¢-plane is again along the real axis toward the origin, but in the pre-
sent case ¢y has the same value on the two halves of the axis, which represent on the z-plane
parts of a single divided streamline. Hence there cannot be a source or sink at the origin;
the fluid must flow away along the imaginary axis. A simple flow of this type is that of

Section 38, whose complex potential may be written

c
2

W= - {118c]

¢

In this flow the axial streamlines continue to the origin; on the {-plane, therefore, the corre-
sponding curves continue to the point [ or { = - i, It follows that the free streamlines become
parallel at infinity.

From Equation [113a], dz = - {dw. After substituting from Equations [113a) and [113c],
integrating with the help of the substitution ¢ = 1,'v and choosing ¢ and the constant of inte-
gration so as to make z2=21/2at Aand A”or ¢ =¥ 1, it is found that

l
c= , (113d]
7+ 4
2! 1 1 172 1 :
2=- —t — (62 -1) + —sin”! — . [113e]
" P | 1 .
Here, for real ¢, and {¢| > 1, - 7,2 < sin n <m2

The particle velocity at any point is obtainable from the equation

aw 1 1/2
cutirE—— = — == (2 o1) . (113f)
dz 4
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Clearly |z| »  only as ¢+ 0, or as -+ - ¢; then, also, 1+ 0, v » = 1. Thus, in particular,
the velocity at infinity is ~1 in the approaching stream. Mathematically, the point / or {=-i
corresponds to all directions of recessiun to infinity on the z-plane, such as those labeled /,

I, I’"in Figure 183. In the same way, C, C’, and C*’ on the {-plane all correspond to the
single point C on the z-plane. At these points there is a failure of one or more of the conformal
transformations.

By procecding as in Section 111 it is found that on 4’4

2l [qB+¢h) 1 2
96+ ¢) + — sin™! - ; [113g]

x

£ =
n+4d (1'*'92)2 2 1+92

whereas along the median streamline /°* C, or the positive y-axis,

21 3-¢% 1 2
y= 3 16 -9) + — sinh™! 9. . (113h]
w+ (1 _ q2)2 2 1 - ’12

Along the right-hand free streamline, proceeding as in Section 111, where Equations
[111u, v] still hold but w is now given by Equation {113c] and ¢ by Equation (113d],

sin 6
do,

dz +idy =- {dw = (cos A + 7 sin 6)

7+ cos3 0

el 7 ! 0 4
z = (sece+—), y= sec @ tan 6 -~ In tan (— +—) , [113i)
7+ 4 m+4 2 4

after integrating and choosing the constants of integration to make x = 1’2, y = 0 at A, where
6 = 0. The other free streamline is symmetrical with this one.

As 8 - - /2, which is the lower limit for 8, 2 » = and y + - «w. Thus the free stream-
lines eventually approach parallelism to the direction of incidence. They also become parallel
o each other, but so slowly that the separation between them continues to increase without
limit. A larger plot of one free streamline is shown in Figure 164, and & few streamlines near
the lamina are shown in Figure 185.

The pressure on the free surface must be the same as the pressure in the fluid at
infinity, since the velocity in both locations is unity. On the upper surface of the lamina it
is higher. The total net force on the lamina in the direction of the stream per unit of its
length is, from the Bernoulli equation,

1 172

Fl = -é- P (1 - 92) dz. [1]3“
-172
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Line of Symmetry

Figure 184 — Plate in a stream: one of the free
streamlines. (Copied from Reference 1.)

Figure 185 — Plate in a stream: a
few streamlines. (Copied from
Reference 8.)

On the lamina the variables are real, so that

dt 2 dw!? 1
dr=d2=-{dw=-2¢{ — , ¢* = | —| = — |
83 dZ 4'2
r 1) at d
1‘1 =—pC f + —? —~— "4[)6/ tz -1 —3‘ [1131\]
o0 1 ¢ 1 ¢
and
apl
Fl= — 11
Vooaad (1131

using Equation {113a] and Equation [113d]: the integrals can be simplified by substituting
¢ =17y, and the integral from -~ to -1 equals that from 1 to + = by symmetry.

In the more general case in which the velocity at infinity is U, the functions w, &, ¢
and all velocities are multiplied by €, but the geometry of the flow net is unaltered. The
force is multiplied by 2.
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For a solution in which the pressure on the free surface is different from that at
infinity; see Reference 7, page 134.

(For notation and method; sce Section 34; Beference 1, Article 76; Reference 2,
Section 12.20.)

114, INFINITE STREAM QBLIQUE TO A PLANE LAMINA.

The solution of the last section is easily modified o as to allow the stream to impinge
at an angle @ with the plane of the lamina, as illustrated in Figure 186. Let o be measured
from the positive z-axis. As before, let the velocity on the free streanlines and at infinity
be unity.

Figure 186 ~ Plate in a stream incident obliquely, with a wake behind it.
See Section 114.

The dividing streamline will now meet the lamina perpendicularly at a stagnation
point C that is displaced from the center. The transformations from {to In {and ¢ are
unaltered; bvit, at the point corresponding to infinity in the approaching stream, the vector
representin~ 7, having the direction of the velocity, must lie on the radius, 0 =& - 7, and
e cutte~ponding value of ¢ will lie to the right of the origin, as shown in Figure 167. When
=¢®"™ o _cosa -1sin . then ¢ =cos o by Equation {113L]. The fiow on the ¢-plane
is easily displaced so as to transfer its central point from the origir to ¢ = cos a ; in place of
Equation [113c], let




C' A'
- ot =1 1 -
J 0

(—im)cll

©

Figure 187 ~ Diagram for oblique incidence on a plate. See Section 114.

c
W= e,
(¢ - cos a)?

Then, from Eaquations {113a] and {114a],

2¢ dt
dz==Cdo=(t+ VE-1) — 0 |

(t-cosa)d

Aflter integrating, by means of the substitution u = (¢ ~ cos a )~
constant of integration to make z = £ /2 for ¢ = ¥ 1, it is found that
lsin‘e

C = —

—_—,
4 +7sina

l cosa -2¢ tcosag—~1 1/2
2= - sinfa + ————— (¢2-1) "7 sin%a
4 + 7 sina (t-cosu)2 (t-cosa)2

1 tcosa ~1

+sina sin” +cosa(3-coszu)].

{—-cCosa
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(114b)

!, and choosing ¢ and the

{114c)

{114d)

S —————— =




1/2 1
Here, for real ¢ and j¢] 2 1, (¢ = 1) " has the sign of ¢, and - /2 < sin™! n < n/2.
For the particle velocity, Equation [113f] still holds.
On the Jamina itself, ¢1s real and ¢ > 1, also ¢ = £ u, hence, from Equation [113f],

1_, 2 1/2 1 - 2
tat —L 2oyt =L (114e, 1]
2q 29

the sign is negative where z > z, posilive where z < z_, where z, is the coordinate of C.

These equations and Equation (114d], in which now z = z, connect ¢ with 2. The distance of

C from the center 0 is the value of z at |t} = = or

l 7
z = ———-——-—|:2 cosa(1+sin2a)4<-; -a)Sind:l ) (114g]

¢ 4+msina

where a is in radians.
The treatment of the free sirsamlines is nearly the same as that in Section 113. Taking

w from Equation (114a] instead of Equation {113c],

. L. sin 0 d6
dz = dx + idy = 2¢ (cos ¢ + 7 >in 0)
(cos @ + cosa )

After separating real and imaginary parts, 2 and y are found by integrating and adjusting the
constant of integration. The formulas are most conveniently written in terms of distances
and angles measured positively with the stream,or y’'=~y,8'=-0,0"=0+ 7 =1~ 9"

Right-hand streamline, 0 < 0'< 7 -a:

l Isint « 2 cos 0°+cosa 2 +cosa
z=o 4 - - s {114h)
2 dvmsine \ (cos '+ cosa)? (1 +cosa)?
, !sina sina sin 0°(1 + cosa cos 07) | 1 +cos (a~0%)
= -ln —————
y 4+ 7sina (cos 0° + cos & )2 cos 0’ + cosa
[114i]
Left-hand streamline, 0 < 6"/ < a:
l {sin? o /‘2 ces 07 -cosa 9 - cosa s
T=m— = _ - -~ —_— y  {114j]
2 d+rmsing | (¢os 97 -cosa)® (1 —cosa)z/
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, ! sina Sina sin 0°7(1 - cosa cos 1)
po- ——— : -
4o om o= 2 cox 1% = cos
T Ea (cos 07« coxa )* cos 7~ cov a

1 = cos (ar 0°)

1114k
. Lycos (D1a) cos )+ cora i
( Note that )
cos 4 cosa 1+ cos(0-a)

The free strenmlines for @ = 35%are plotted to seale in Figure 1546,
The

force £ on the lamina per unit of its length can be found, as in Equations [113j, k],
using or =

2 from Equation [114b], ¢ from Equation [114c], and evaluating [~} and [™

—_
separatelv. When the veloeity at infinity and on the free streamlines is U instead of unity,

apll?sing.
Fom e 2 (1141]

4 4+ 7 sina

The foree acis perpendicularly on the lamina,

Ti center of pressure. at which £, may be supposed to act, is displaced from the

venter to the position = 2 where

3 !l cosa
}:—’ N . I]l!fn}
4 4+ 2 sina

The deduction of 7 ix given in Section 77 of Lamb's Hydrodynamics.! where Equation [15]
1< equivalent to Equation [114b] here: a table of value~ of F,. z_ and 7 for various values of
o s oalso ghven.

(For notation and method: see Section 34: R ference 1. Article 77: Reference 2.

section 12.3).

115. INFINITE STREAM ON A V.SHAPED LAMINA.

Ler a steady siream impinge symmetrically on 4 lamina whose section consivts of

ines meeling at an angle 2a as measured on the dowrsweunm <ide,
Tre solution it Section 113 can be modified w syt this problerm by interposing a

;
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1 2a
half, on which ¢ - — 7, makes with the real axis of ¢ the angle - (-—)— 7 - a) - (--) n = -
1 2 7
(—)— 7+ a) . These tvo lines on the -plane thus enclose an angle 2a between and below

them; and the arc included between them on the unit circle for ¢ corresponds to the entire
lower half of the unit circle on the ¢,-planc; sce Figure 185, in w hich the free streamlines are
copied from Tumlirz.!88

If { is then assumed to be related to z by the usuval Equation 1110a] or dz = - {dw, the
two lines and the enclosed arce correctly represent the dividing streamline, I77CAl, 1CA’TY,
on the z-plane, of which the portions A/ and A’/”are free; see Figure 188. The variable ¢
may he assumed to be related to ¢ and w in the same way as { was in Section 113. Then,
from Equation [113c] and Equation [113a],

e , 172 _
dz = = Ldw, w = ~ < {y==t=("-1) . {115b,c.d]
¢
A £
y
(~) ll’
/ c \ z
s
P <
A’ A
/ 7=t Wake 7=
I’ (=) (=) 7

Figure 188 — Symmetrica! angle-lamina in a stream with wake behind it.
(The free streamlines sre copiaed from Reference 188, Volume 121.)

On the right-hand half of the lamina, ¢ is real and ¢ < - 1 as before; hence, for continuity,

1/2
(¢ -1y " =-y?-1,end

1
Ly ==t 21, — st \Jt? -1,
1 4- A

i

If ds is an element of length along the lamina and dz the corresponding element of z, from
Figure 188
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dz=dr+idy=ds(sinag -icosa)-ds e—‘ (

whence
; ) -
|\ > n-a dt
a’s:e(2 dz = = 2¢ {187 ,
t3

from Equations [115a,b,¢]. Hence, if 6 is the half-width of the lamina,

- dt
b=fds=—20f"pz+\ﬂz-1f°/”—;.
-Og t

The integral can be evaluated numerically, and the equation then fixes ¢ in terms of b.

Also, on the right-hand half of the lamina

!
2 _ 1 _ -da/m
7 = —2' 1 )
¢
since ¢, is real and positive. Hence, the force ou the ertire iamina per unit of its length, in
the direction of the stream, is
=1
N 2 . crasm ezaym
Fy =5 psing) f(L - ¢*) ds = - 2cp(sina) (G2evm . grrasmy &
: 3
¢
-0

dt
(115e]

~1
=-2cp(sine) f [(..“ ‘/52‘1)2‘!/”-(—t—-/?__—l)za/”] :
o0 ¢

The evaluation of the integrals is discussed in Article 78 of Lamb’s Hydrodynamics;
the last integral there written is evaluated by complex integration on page 363 of Wilsen’s
Advanced Calculus.?82 In the location first cited is given a table of values of the force,
there called *‘pressure.”

(For nonsymmetrical cases; see Reference 2, Section 12.50 and Morton;! 97 see

Reference 1, Article 78; Reference 2, Section 12.52.)
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116. JET ON A WALL.

Let a two-dimensional jet of width e fall upon an infinite plane wall, approaching with
uniform velocity U at an angle a with the face of the wall, as in Figure 189. Part of the fluid

in the jet will flow away toward one side, part toward the other.

Figure 189 — Two-dimensional jet
striking a wall,

Ir the two departing jets, of widths @, and a,, the velocity will ultimately become
uniform and equal to that in the incident jet, since, as in Section 41, it is uniform along the
free streamlines. Hence, the incompressibility of the fluid requires that ¢, + a, = a.
Furthermcre, the component of momentum parallel to the wall must be conserved, since no
force acts on the fluid in this direction. In unit time a mass paU of fluid, carrying momentum
palU?, is lost from the incident jet and reappears as masses p U and pa,U in the departing

jets; hence an2 cosa = palU2 - pazUz, and ¢ cosa = a; ~ a,. From these two equations

a

a=— (l+cosa) a,=—(l-cosa), — =tan*—. {116a,b,c]
2 2 ay 2

The decrease in the component of momentum perpendicular to the wall, on the other
hand, equals the total force on the wall, so that

F, = pal? sina {116d]

where F, is the force per unit of length of the wall in a direction perpendicular to the planes
of flow. The effective line of action of ¥, can be found from the conservation of moment of
momentum. About the axis M along which the median plane of the incident stream cuts the
wall, the incident stream has a zero moment of momentum because of symmetry; but the median

planes of the departirg jets lie at distances /2 and a,,2 from M. Hence, in unit time the
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combined moment of momentum of these jets increases by
2 “ 2 DY — iy 2 2 2 4,
pa, U7(a,.2) = pay U (a,.?) = (af - ay) pl*."2,

in a clockwise direction. The reaction on the wall must be an equal counterclockwise moment
of force about M. Hence the force F| must act at a point displaced from ¥ to the left, or
toward the stagnation point C, through a distance »# such that ¢ ¥} = (a:2 ~ a22)pU2,’2 or, from
Equation {1164} and Equations [116a.b],

2
Ay = ay a .
¢z ——— = — cota. {118¢}
2a sina 2

Fui ner details can be discovered by resorting to the method of complex variables.
Only a few results will be cited here.

The distance /& {rom ¥ to the stagnation point C is

-

w|a

a l’ n .
cota + -—L(cosa)ln (2 sina) + In cot.-gw-(; —a) smd] . [ef]
g

&

At perpendicular incidence ot a = 1,2, the equations for the free streamlines, with the

origin taken at the stagnation point C or M and with the z-axis drawn along the wall, are

tof= 41 6 1.4 .2 [116g, h}
x==a 0+ xn,ot2 yy=a + — In cot i-.‘) s g

7 2 e 4 2

<

where ¢ is the angle, taken positive, between the direction of the tangent to the streamline and

the wall. On the median plane, where z = 0. in terms of the velocity ¢, if U > 0,

U )
y:i[ln 9 g et — +r.'] . (116i]
U-q q

Along the wall the absolute value of z is given in terms of ¢ by the same expression that
represents y along the median plane. Each half of the jet has a plane of symmetry through
C inclined at 45 deg to the wall.

Flow nets for a = 7,2 and ¢ = 37,4 are reproduced from Reference 183 in Figures 190
and 191. In the figures v, stands for U, and ¢ and ¢ ave reversed in sign in accord with the
older convention. The numerical values refer to the case « =1, v; = U =1. The broken curves
are curves of constant velocity , the value of the ratio w = ¢,’U being indicated for each.

(See Reference 2, Section 11.41; Reference 50 and 183.)
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of ¢, a variable on whose plane the z-plane corresponds to a semicircle: in terms of this variable
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Figuze 190 — Flow net for a two-dimensional jet striking a wall perpendicularly
(Copied from Reference 183.)
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Figure 191 — Flow net for a two-dimensional jet striking a wall at 45 degrees.
(Copied from Reference 183.)

117. OTHER FREE-STREAMLINE PROBLEMS.

1 he literature on potential flow with free streamlines is extensive. A good summary up
to 1920 was given by Jaffe .!85 Many authors have followed Levi Civ

w is everywhere analytic. The later general discussions given by Cisotti® aad by Bergmann

may be mentioned; see also Reference 2, Sections 12.40-12.47.
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Effle..

The efffux of a liquid through a slot in the side of a vessel whose contour is a polygon
is easily handled, and many cases have been solved. A simple case is shown in Figure 192a;
streamlines inside the vessel and a few equipotential curves are shown for the same case but
with a narrower slot in Figure 192b. Three other cases are shown in Figure 193. See Tumlirz,!88

Cisotti,' 89 von Mises,'?9 and Eck.!9!

ai1a
a a
\
b )
Figure 192a Fiower 102h
™ Loo — Liftux from a tank of {inite width. See Section 117.

(Copied from Reference 188, Volume 126.)

|

Figure 193a

,/

Figure 193b Figure 193¢

Figure 193 — Three other cases of efffux; the sides of the issuing jet are shown.
(Copied from Reference 188, Volume 121.)
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Efflux from a two-dimensional vase with curved sides was treated by Cisotti;!?? see

also Reference 2, Section 11.54.

Deadwater or Wake in an Infinite Stream

A ‘‘deadwater,” that is a region occupied by stationary fluid or by gas at suitable
pressure, ahead of a concave angle was shown to be possible by Villat.!93: 194 A similar
deadwater can occur ahead of a convex angle, in addition to the usual wake behind it, when a
stream is incident unsymmetrically. The cxtent of the deadwater is indeterminate; see Thii’y,195
Jnffe’,lss' 196 and Morton;'%7 seec also Yokota.!9® The indeterminateness is perhaps no more
surprising than the arbitrariness in the direction of the incident stream; it may be supposed that
the size of the deadwater was fixed by the manner in which the flow was established in the
first place.

The wake behind a lamina with a rim on the forward side was treated by Love,%? behind
a lamina with flaps folded back by Schmieden,’®? behind a curved lamina by Leathem,”4
Cisotti,?5% and Argeanicoff.!93

Deadwater regions on the sides of a rectangle immersed in a stream parallel to the sides

were described by Riabouchinsky,!!?

who also gives values of the inertia coefficient.

A deadwater extending from one plane lamina to another was also described by
Riabouchinsky.'!® When the laminas are oppositely inclined to the stream there is circula-
tion around them as a whole.

The wake behind circular and elliptic cylinders placed in a uniform stream was studied
by Brodetsky2°? and by Ford,2°! and for the circular case in further detail by Schmieden,!99: 202

The symmetrically disposed free streamlines behind a céircular cylinder, on which the
velocity is the same as that in the incident stream, may separate from the cylinder at any
angular position from 6 = 55° to 6 = 120°, approximately, where 9 is measured from the stag-
nation line on the forward side. If they separate at 55 deg, they are concave toward the wake
throughout their course; at intermediate angles they are convex near the cylinder and concave
beyond; at the largest angle they are convex throughout and meet asymptotically at infinity;
see Figures 194, 195.

The flcw through a grating of laminas or other cylinders, with a wake behind each, has

181 3

been considered by von Mises,!9° Betz and Petersohn, and Schmieden.2°

Free Streamlines in a Channel

The wake behind a body in a channel was considered in a simple case by Cisotti!8?

and more generally by Villat204: 194 and by Bergmann.'87 A deadwater ahead of such a
body, or in front of the projecting bend of wall where a channel divides, was considered by
.t\gost,inelli.ms For a channel interrupted by openings where free streamlines occur, see
Colonetti,2%% ana Miyadzu.'76 The flow past a triangular ridge on a wall with a wake behind

the ridge is illustrated in Figure 196, as found by Tumlirz.!88
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Figure 194 — Some ~iwreamlines, on one side of the plane of symmetry, past a
cylinder with a wake of maximum size behind it.
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Figure 195 — Pressure on a cylinder in a
stream with a wake behind it.

The ordinate represents excess of pressure above pressure at infinity, divided by pL’2/2 where U is the velocity
in the approaching stream. Curves [ and III are for the lumiting forms of the free streamlines, leaving the cylinder
at 55% or l20°-+-; these and Curve Il continue through the wake along the 0 axis. Curve IV is for the theoretical
continuous flow of Section 67. The broken curves represent observed pressures, under conditions ¢f laminar flow
(R <1.3x 105) and of fully turbulent flow (R > 2.3 x 105); R 15 Reynold’s pumber. See Section 117, ‘‘Circular
Cylinder,”” (Coopicd from Reference 199.)

Figure 196 —~ Streamlines past a wall carrying
a triangular bridge, back of which a wake
exists. (Copied from Reference 188.)
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Free Surface or a Wall

The following cases may be listed: rise of the free surface over a laminar riffle,
Cisotti;297 change in trend of the wall, Boggio:2%8 deadwater in an angle, :\gosiinolli:ms
source against a wall, Masotti.“5?

Gliding of a plate on a free surface is treated by Green?99 and in Milne-Thomson’s
book (Reference 2, Section 12.3); of a slightly curved plate, by Franke.?!?

A jet of finite width striking a cylinder of the following shape has been studied: a
plate, with a wake behind it, by Morton and Harvey,:’” Tomotika,2!? Cisotti,?!3 Havelock,?
Stokalo,z‘19 or without a wake, by Tomotika:?12 a circular arc without a wake, or a circular
eylinder, by Jacob.?'' The jet may issue from a two-dimensional orifice and hit an obstacie;
see Valcovici,2!S Tumlirz,2'% and Hartmann.?!7 A cylinder may have both a wake behind it
and & deadwater 12 front: see Agostinelli. 9%

Jets or currents of fluid bounded by free surfaces, or in part by walls, may present
the following features: branches, Cisotti,2!® also Reference 2, Sections 11.30-11.43; a
point of union, Boggio?!? and Caldonazzo,229 perhaps with one issuing from a vessel,
Agostinelli;?2! enclosed deadwater, Caldonazzo,222 Cisotti, 2! 3 amd Brusoni:?22 an enclosed

224 225

source, Hopkinson and Masotti; an enclosed vortex, Hopkinson,224 Imai, 22 and

. 37
Simmons.227-

A jet issuing from a slot in a plane wall and entering a similar slot in a parallel wall
was described by Riabouchinsky.!!?

297




CHAPTER IV
CASES GF THREE-CIMENSIGNAL FLOW

118. INTRODUCTION

In this chapter the principal cases of three-dimensional potential fiow that have been
worked out will be described, or at least listed. The mathematical solution of problems is
much rore difficult in three dimunsions than in two, since the mothod of complex variables is
no longer available. The usual procedure is to obtain solutions of the Laplace equation by
any means whatever, and then by suparposing solutions to work out proper combinations for
certain speciflied boundary conditions, A stream function ¢ can be defined only for the case
of axial symmetry, as described in Section 186,

For the con ponents of the particle velocity of the fluid in the directions of Cartesian
or r, y. z axes the symbols u, v, © will be written without repetition of their definition and,
as usual, ¢ will denote the speed, so that

g=+ (2 + v s u)¥ (118a]

Confusion with the use of u for the complex potential in the last chapter should not arise,
since in two-dimensional motion the third velocit: component v is always zero. The com-
ponents of the velocity are understood to be calculated from the velocity potential ¢ by means

of the usual equations

= - 'U=-—, U = = ——— [118b,c,d]

If polar coordinates r, 8, « are used, or cylindrical coordinates r, @, » as described
in Section 6, the components of the velocity in the corresponding coordinate directions are,
as in Fquations (6k, 1, m, p, q, r],

a¢ 1 ¢4 1 dé
- — NP it = — 118e,f,g)
7’ or e r 90’ T rsin 0 do [ &
or
dd 0d 1 96 .
BT T T T HEh Ll

“hen the motion is steady, the pressure is given by the Bernoulli equation, which may
be written as in [34h] or

L e e e ¢




- -t

p=—p (L -0% 1 p [118k)

(SR

where U is the uniform velocity of the fluid at infinity and p_ is the pressure there; p is the
density of the fluid. Cases in which a body is moving in steady translation with the fluid
at rest at infinity can be reduced as usual to the case of steady motion of the fluid by impart-

ing to everything a velocity equal and opposite to that of the body; the pressure and the forces
on the body are not thereby affected.

119. POTENTIAL AND STREAM FUNCTIONS FOR A UNIFORM STREAM,
A POINT SOURCE OR A POINT DIPCLE

The velocity potential for a uniform stream having velocity U toward negative z can
be written

¢ =Ux {1194}

for then, by (118b,e,d), u=-U, wv=0, w=0. The streamlines are straight lines parallel
to the xr-axis.

For some purposes it is convenient to regard such a stream as having axial symmetry
about some chosen line parallel to the velocity, and to define an axisymmetric stream function
with respect to this line. Let the positive direction along the line be taken toward positive z,
and thecugh ary point P or (2, y, 2) draw a circle of radius @ about the chosen line QQ’ ae
axis, as in Figure 197. Then, across any surface bounded by this circle there flows in unit
time a volume r@2U of fluid. lence, according to the usual definition as stated in Section 18,
the axisymmetric or Stokes stream function at P is #%2U/2» or

1
g == Ua? (119b)

In genecral, any line paralle] to the flow may be chosen as the axis of symmetry, and
@ represents the distance of P from this line. If the z-axis itse!f is chosen, 32 = y2+ 22,

If the velocity of the uniform stream is U toward s direction whose direction cosines
are [, m, and n, the velocity potential becomes

S == U(lz+my+nz) {119¢]

as is easily verified from [119al by a rotation of axes.

For the point source, the velocity potential ¢ at a point (z,y,2) is, from Section 12,

A
&= — {1194)

299




where r denotes distance of (z,y,2) from
the location of the source, and 4 is a

constant, positive for an actual source and

nogative for a sink. The quantity 4rA4

reprosents the volume of fluid emitted by

. .

the sourco per second. T.e streamlines / \ | *

are radii drawn from the source. Q Y o l j
An axis of symmetry may be drawn AN ~— 1 l ’:

/wa/\”;y/

. N - h
through the source in any direction; let it be \ j i
taken as the axis of polar coordinates \

1, 0, » with origin at the source. Leta

q 9 ,
circle be drawn as before. with the axis of a /
symmetry as its axis, but now consider q, /
this circle as the perimeter of a spherical . )

P P Figure 197 — Symbols for flow symmetric
cap C cut ont of a sphere centered at the about. a line § Q"

source; see Figure 197 again, where a

source is now understood to be Jocated at @, and U = 0. The arca of this cap is § = 2nr?

(i —cos 0), where r and 9 refer to any point on the circle, and the rate of outflow of fluid
across it is Sq = 8A/r2, because of the symmctey. ience the value of the stream function at

P is - SA,/#? divided b¥ 27 or, after inserting the value of S and dropping the constant term - 4,
Y =Acos 0 {119e}

The total range in the values of ¢ from 0 = 0 to 0 = 7 1s thus =24, which equais the
volume output from the source per second or 4».1 reversed in sign and divided by 9z.

If Cartesian axes are intreduced and the z-axis is drawn perallel to the axis of symmetry
and toward 8 = G, and if the source is at (x4 ¥y 2,) as in Figure 198, then

r=lz-2,+ (1-9)% + (2-2)2"

and

x-a:l

{119f]
;

For a point dipole, let polar coordinates 7, 8, w be employed for the moment, with the
origin at the dipole and the axis for 9 lying along the axis of the dipole. Then the potential
is, as in {12d]

ucos @

¢ = — (119¢)
T
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where y is a constant, the dipole moment. The physical axis of the dipole is directed toward
0=0if p>0,towvard 0 = nif p <0,
The fluid velocity lies in a plane through the axis of the dipole, which is an axis of

symmetry. Its components in the r, 0 directions are, from [118e,{, g],

2ucosd psin @ . .
1= —, ’Io = -y Ju = 0 Ulgh’l’]]

s 3

The stream function ¢, like &, is most
2 Pley.2) easily found by differentiating that for a point
source, but it can also be found by direct

P ) integration. Through any point P draw a
Q Axis Q

P

( circle as before, with the axis of the dipole
z g

y L as its axis; let its radius be @, and let the
distance of its plane from the dipole at @

z be A. On the plane of the circle take a

ring-shaped element of area centered on the

axis; see Figure 197 again, in which there

is now a dipoie at @ with its axis along
Q¢’, and again U = 0. The area of the ring
will be 275 “dw * where d&” is its width

and &’ ig the radius of either perimeter; and,
because of the symmetry, the rate of flow acrcss it will be 27¢,w"d&’ where 4, is the com-

ponent of the velocity in the direction of the axis. The flow across the entire circle is thus

Figure 198 — A dipole at Q or (z,, ¥,: 2;)
with its axis parallel to the z-axis.

w

f 7,205

0

Now, by projection, if r*, 8’ are the values of 7 and 6 on the eleme-iiary ring,

7y =g, €08 8"~ qgsin 0°= £ (2 cos? v’ - sin? 07)

r

342 1
- (3 cos20'—1)-y(——- - ——-)

r 5 3

See Figure 197. Thue **  .w across the circle is
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f(‘) 342 1
Yo

— - — | ®'de’ = %y
Jo r’s rr3

1<

w

. , %
since r’ = (A2 + &2,

Iience, if the positive axis for the dipnle moment is chosen also as the
positive axis in defining the axisymmetric stream function ¢,

~2
U= (179k

Ilere @ denotes distance from the axis of the dipele. If x denotes distance along the
axis, measured from the dipole,

~o z @
r=[22+%2% ", 08 0= —, sin 0 = —
r r

The variables z and & nay also be regarded as two out of a set of cylindrical coordinates

Z,w,w, and in terms of them the potential and the corresponding components of velocity are

2 ~
nr i z Tw
= —; g, =—\3—-1], q5=3p— {1191,m,n]
r3 ~ r r
and q, = 0.

Or, if Cartesian coordinates are used, with the z-axis drawn in the direction of the
dipcle moment for positive y, and if the dipole is at (z,,y,,2,), as in Figure 198,

%o %
r=Uz-z)?+ (y-y)?2+ (220, @ =Uy-y)? + (2-2))2

and the potential and the three velocity components may be written, from [119¢] and [118b,c,d],

.’t—.’tl
S=p ——

{1190]
.3

dz-x ) (y-y))

S

3(z-2,) (2~2))
U=

.S

(119p,q,r]

If the z-axis is otherwise drawn, let the direction of the dipole axis for positive p have
direction cosines {,m,n. Then, by rotation of axes it is seen that
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—-7 Axis of Symmetry

Figure 199 — Some streamlines due to a dipole, for equally spaced values of .

b = %[l(m-xl) + m(y-y,) + n(z2-2))]

r

{119s]

Since mu(y-yl)/r3 and ap(z- al),'r3 obvicusly represent potentials due to dipeles with axes
directed toward y or toward 2, respectively, the potential can be regarded as the sum of the

potentials due to three component dipoles havirg moments I, mu, ny; these moments represent

the vector components of the moment y regarded as a vector.

Streamlines selected for equally spaced values of ¢, including the z-axis, are slown

in Figure 199, which ma; refer to any plane through the dipole axis. Only half of the symmetric

diagram in this plane is shown.

Reversing the sign of u reverses the direction of the axis of the dipole and reverses
all velocities. As an alternative, yx may be kept positive and the axis for @ may be drawn 1n
the opposite direction. {Sce Reference 1, Article 95; Reference 2, Section 15.20, 15.22, 15.26.)

120. YARIABLE POINT SOURCE, OR IFLOW NEAR A SPHERICAL CAVITY

In the flow from a point source, the potential ¢ and the velocity q,, taken positive when

directed outward from the source, are

4
é:—-, ﬂrz-;i
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where r denotes distance {rom the source. The pressure at any point in the fluid, from the
usual pressure equation for incompressible frictionless fluid moving irrotationally or

Equation [9g], is

1, [1da  A?
P=pl— —-=—qg°}+constant = p{ — — = — |+ p_ 1120c)
2 \f‘ dt 2,4

where p, is the pressure at infinity. For, at a given point, only the factor 4 in & varies, so
that
a1 dA
ot T rodl
The point source is an ideal abstraction that is useful in building up solutions of
practical problems.
Consider, for example, a sphere whose radius R varies with the time; or, it may be simply
a spherical cavity in the fluid, or a bubble of gas. Let the fluid motion be spherically symmet-
rical sbout the center P of the sphere or cavity. Then it can be represented by the formulas

appropriate to a point source located at P; see Figure 200.

Figure 200 — A spherical cavity of
variable radius 2.

At the sphere, r = £ and ¢, = dit/dt. Thus, from [120b],

dR
= R?2 — 120d
Y { ]
and in the surrounding fluid

s R2 dR ( )2 dR [1200.1)

b~ — — 4 — — e

rodt’ 7 r/ dt !

1 d ( 2 (IR) 1 /lt’) ((IR\
= - -—t- 120,
4 p[rdt 4 s \7) \@/ [P P (120¢]
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If the pressure in the cavity or bubble is py, then pp = pat r=R or

1 d dRY 1 [dR\?]
ol = Sfpr &N (E 120h]
PR p[le dt( dt) 2(:1:)J+p°° [

If pp is known as a function of R, this differential cquation determines 2 as a function of
the time.
The kinetic energy of the fluid is

.

1 [ dr 42 ey :
T=_ 2 2y ('t = 9pp 42 1 c = =9mpRR3 {22 120
2 0 qu (4n7%) dr A 2 wap —— A ap (dt ) L i}

from [120d]. (See Reference 1, Articles 56, 91a; Reference 2, Section 15.20.)

121. POINT SOURCE IN A UNIFORM STREAM

Let the flow due to a point source be superposed upon a uniform streaming motion.
Tuake the origin 0 at the source and the x-axis parallel to the flow at infinity. Since the motion
is then axisymmetric about the z-axis, it suffices to take as a second coordinate the distance
‘@ from the axis, and to study the flow in a single plane; see Figure 201.

= U
~ et

™=
ds <, o \
\ \

oN |

Figure 201 - A point source at 0, in a uniform stream. See Section 121.

The potential ard stream functions can be written, from Equations {119a,b] and [119f),

b2 2 ? 2, =2 i
H=U (a:+ —) Y= U ~22+b -), r=yVz‘+ow {121a,b,c]
r

Here b is a positive constant and U denotes the velocity at infinity, taken positive when
directed toward negative x. The z and @ components of velocity are, from [118h,i],
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ad xz dé @
f]xg_._ _‘_—_['(1_/)2 -)‘ I[a-:— '_—"_:E [)2(‘:)— [121(],0]
ar 3 g dw P
whence
x b4
72 = (]xz + (]a-;‘! = (’2 (1 -2 b2 —-; + —4—) [121”

A stagnation point @ occurs an tha wavi- ' 1 L4ke g=0, o= 0,sothat z=r= &
< warty o the entire positive .-axis ¢ = 52U and is constant. But ¢ = 520 also on a

surface of revolution S defined by the equation

]

T

w2=9M2 (1-f)=%2 (1-cos 0) (121
r

where cos 0 = z/r. On this surface & has a maximum value of 2b at 0 = 7, or as z » ~ = and
r»lrl. As rincreases algebraically, » decreases, and vanishes when ¢ = 0. To find z at
this latter point, substitute r = \/r2 + G2 and rationalize, obtaining

Y (-4 T2 402 (H2-2D) =0 {121h}

Ata =0, z= b Also, differentiating [121h], (433 + 2 (22~ 4523 (d57/dz) + 2(52-407) z = 0,
whence, as & »+ 0, do/dz » ~ . tence the surface S cuts the z-axis perpendicularly at the
stagnation point @ or 2 = b.

Thus the streamline for ¢ = 52U, approaching from both sides along the z-axis, divides
at ¢ into a sheaf of lines that extend off to infinity aleng S. The surface § divides space
into an exterior region occupied by fluid belonging to the incident stream and an inlerior
region occupied by fluid that has come {rom the source.

If a solid boundary is introduced along S, no singularities occur outside it. lence
the formulas represent flow past a body of this shape, or a blunt-nosed cylinder of asymptotic
diameter 45. Its shape is fixed uniquely, since, if b is changed, Equation [121g] remains
satisfied when all coordinates are changed in proportion to 5.

In Figuee 202 are shown some of the streamlines on a typical plane through the axis
of symmetry; the lines are equally spaced at infinity and thus differ by equal incrementg of
the quantity ¢/@. The excess of the pressure p above the pressure p in the stream at
infirity, when the motion is steady, 1s also plotted, for points on S or on the z-axis in front
ofit. OnS, p=p,, at 2rz=>5%orxr=b/\/6=0.408b.

To find the total force on the solid, which must he parallel to the axis by symmetry,
select a narrow ring cut from its surface by two planes perpendicular to the axis, as

illustrated in Figure 200. The circumference of the ring is 2nw, hence its area is 2rads,
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D P=p 1

Figure 202 — Streamlines past a semi-infinite solid of revolution obtained
from a point source at 0, and plot of the pressuse along the axis
and over the solid. See Section 121

where ds is its width along the tangent th S in a plane through the r-axis. Let the normal to
the surface at any point on the ring meet the axis at an sigle € . Then the force due to the
pressure p on any element of the ring has a compcnent along the axis equal to the force

multiplied by cos ¢ , and, since p and € are uniform around the ring, the total component of
force due to the ring is dF = p (275 ds) cos € . But di= ds cos € where d& is the element

of @ corresponding to ds. Hence the total force on the solid, measured positively toward
negative z, is

F =2z pr’d&' [121i]

This formula holds for any surface and any pressure distribation which have a common axis
of symmetry.

For steady motion, the excess pressure, p~p_ = p (U2~ ¢%)/2, may be inserted for pin
this formula. It is simpler to change to r as a variable of integration. Substituting
2 - 12~ 52 in Equation [121h), and then differentiating,

rt =r

A - 8 .
w2402 , %0da = — dr [121],k]
;2 .3

Eliminating z/r from Equation [121f] by means of [121g] and [121]],

262 36*
,7:':(;2(1 R ___-?__) (1211}
;2 o
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on the solid. The limits of integration for r are from r= b at { to =, Fvaluation of the
integral gives

Thus, il the motion is steady, the total force on the solid is the same as if the pressure
in the fluid were uniformw and equal to its actual value at infinity.

The formulas would also represent the flow inside a shell having the shape of S, due to
a source on its axis. The volume of fluid emitted per second by the source is 47 b2 L.

Changing the sign of {/ merely reverses the velocity at all points. To reverse the
solid lengthwise, the r-axis may be drawn in the opposite direction. (See Reference 2,
Section 15.923.)

122. POINT SGURCE AND SINK IN UNIFCRM STREAHM; RANKINE SOLIDS

Upon a uniform stream with velocity U7 in the direction of negative z, superpose the
flow due to a point source on the z-axis at r = @ and also that due to a sink of equal strength

at r = - a. The resulting potential and strean: function, from Equations [119a,b] and [119d,e],
can be written

2
ool [“f’,(l_l_)] [122a]
2 J

W Ty
1 1~2 2
U = > Ulo* + 6% (cos 0, ~cos 0,)] [122b]

where % is a positive constant and the significance of Tys 7oy 04, 0, is shown in Figure 203.
The figure refers to any plane through the 2-axis, about which the flow is symmetrical. In
particular,

20" 2 ~2h
r1=[(r-a)2+‘u‘;’, y 1y =lzra)® +@%)

The flow net is symmetrical also with respect to the plane » = §. For, the second
term in the brackots in [129b] can also be written ~ b2[cos (n=0,)+ cos 02], and it is then
clear that ¢ is unaltered whereas & is reversed in sign if z, ry» and 7~ 0, are interchanged
with - x, T2 and 4,.

The comrponents of velocity are, from [118h,i,j], 7, = 0 and

b2 z~a r+a
= —]+—( - ) {122¢]
2 ,13 s 3

2
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in a stream. See Section 129.

/ / r \ 1 Fi 5 Poi ad si 3
02 0 /\o‘ > 1gure 203 — Point source and sink at = a,

1 1
g~ =— b2 Ui 1.1 [122d]
e 3 ,03

1

On the z-axis wherever z> a, 1y =2z ~aand r, =z + ¢

where 2 <-a,r =a~2a,ry=~(a+2)

2 ah?
w="U (- 1+ ._a___l_f.l_> (122¢]

(z2_ 02)2

Hence at such points

and g = lu]. Stagnation points (]1 and Q2 occur where ¢ =2 I and ! is given by

2
9 ab?l = (12 -a?) [122f]
In the plane z =0, 9= |u}, | =7, = /5?+4?, and
!
b2
w=-U[1+ —2— 373 [122g]
(&% + a?)

On the z-a is, ¢ = 0 where 2> a or z < - @, so that 0, = 0,. Botween z = £ q, 0, =m,

0,=0,¢=- b0
The value ¢ = 0 occurs also on the surface of revolution S defined by the equation

@2 =52 (cos 0,- cos 0,) [122h]

By writing cos 0, - cos 0, = (cos?0, ~ cos?0,)/ (cos 0, + cos 0,) and then expressing

cos 0, and cos 0, in terms of z, @, and a, the equation carn also be put into the form
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fabt r - ror era)r ¢ (x-a r,) [122i]

It is then easily seen that the surface passes through both stagnation points. It is broadest

in the middlo; its half width 4 is the value of & whon » = 0 and is given by

A2 =92 ab?2\Ja?y k2 (122}

since cos 0, - - cos 0, - a/\Ja? + k% when r = 0.
This equation and [112{] can also be written

which shows that the shape, being fixed when A/¢ and !/a are known, depends only on the
constant b/a,

The surface S acts again as a dividing surface. The fluid brougiit up by the stream
remaing outside of S: the space inside it is occupied by fluid that is on itg way from the
source to the sink. The streamline ¢ = 0 follews the 2-axis to @, divides into a sheaf of
lines which pass around § to reunite at @,, and continues along the z-axis.

The formulas may represent streaming flow past a solid whose surface is S. Sol:.s
having such shapes are called Rankine solids. Given the length 2¢ and the maximum breadth
24 of the solid, @ and b can be found from (122f] and [122j]. The velocity is most corveniently
found by adding vectorially the component velocities due to the stream and the two sources.

An example of the streamlines is shown in Figure 204, for 62/a% = 0.7, h/a = 0.97,
{/a = 1.58. Streamlines are drawn for equally spaced values of ¥ /@.

The formulas could also be used for the flow inside a shell having the shape of S,
caused by a source and a sink at the proper points.

If U > 0, there is a positive source at x = @, and a sink at x = - a. If U <0, all
velocities are reversed and the source and sink are interchanged, but the su’id is unaffected.

(See Reference 1, Acticle 97; Reference 2, Section 15.27.)

123. LINE DISTRIBUTIONS OF POINT SOURCE

For some purposes it is useful to imagine point sources distributed continuously along
a line or curve. Let the algebraic strength of the sources per unit of length along the curve
be a, so that, from a length ds, 4z ads units of volume of fluid are emitted per second Then
feom [119d], in which ads replaces , the potential due to the sources on s at a distance r
from de will be ads,’r, and the total potential at eny point (z, ¥, 2) due to all sources on the

curve will be
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Figure 204 — Streamlines past a rankine solid of revolution, obtained from a
source and sink at & g,

ads

$=1 — [1€3a)
r

where r denotes distance from ds to (2, y, 2) and the integral is to be extended over the entire
curve. Both a and r may vary along the curve.

The uniform line distribution. As an important special case, let a be uniform along

the r-axis (rom 2 = a to = = b. In the integral for ¢ write dz’ for ds and x’ for the value
of x at ds. Then

b
(1.23’ P
L e A (RPN 1123b,c)
r
a

where & denotes distance from the z-axis. In this case an antisymmetric stream function ¢
also exists; integration of [119f] gives for it

See Figure 205.

Evaluation of the iategrals gives
x=b
~nh
S=-aln {[(.r'- )2 + %2 - (z'-—z)}/
x ‘=a
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or

r,tx-a ra+ry+h-a
¢ = aln ——— = alnt —————— [123d]
rp+x-b ratfy~bia
U= a(r,-p) (i23e)
where r_ and r, denote distances from the ends of the line of sourcss, o
l/l‘ 1
r, = Uz-2)2 + T2, 1y =[(z=-h)? +'(752]/2
The identity of the two forms given for ¢ is easily verified by eliminating 2.
The components of velocity are, from (118h,i],
J 1 1 dd z-a -0
g =-—"J’=a(_, ) ’I;;’=--—-=-=a7( -—) [1231.g]
x Jx Ty Ta @ @ T Ty

since G2 = 1.2 - (z-0a)? = 1,2 - (z-b).2
The equinotential or ¢ surfaces are ellipsoids, the stream surfaces for ¢ = constant
are hyperboloids; all have comm.n foci at (a,0,0), (5,0,0).

If a < 0, there is a line of sinks instead of actual sources. (See Reference 2, Section
15.24; Reference 7, p.60.)

124. LINE OF POINT SCURCES IN A STREAM

Suppose that = uniform distribution of point sources exists along the stretch of the
z-axis fiom z = ~ a to z = 0, and that the fluid at infinity is also streaming at velocity U
toward regative r; see Figure 205. From [119a,b] and [123d,e], in which now @ » -~ a, b=+ 0,

riteta rer +a
$=lz+ aln ———=Uz+ alp ——— [124a]
r+a rer~a
1 ~ 2
Y= 3 Uz +a(r -r) [124b)

where

~ % o~ ‘A
r=(z2+a7y, ry= [(z+a)? + @]

and @ cenotes distance from the z-axis. The volume of fluid emitted per second from unit
length of the line of sources is 47 a. Let a and U have the same sign.
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Figure 205 — A iine distribution ab of point
sources. See Section 193.

1 1 z+a

q, =- U-HI(—— —") ’ f]a: % (-——- ——) [124C,d]
r Ty @ ry r
AY

On the positive z-axis r =z, r; = r + a; and it is obvious from symmetry that g5 = 0.

Hence a stagnation point @ occurs where, to make ¢, = 0,
[124€]

On the positive z-axis ¢ = ¢ @a; also, y = ¢ on the surface of revolution S defined by

[124f]

— 2o
——(a+r—r‘)

By expanding r and 7, in powers of 22, it is readily shown that S crosses the z-axis perpendic-

ularly at @. Since everywhere on S

2OV 2 (cost 9,)<0
= m- 0O - 1
- ) = (080 - cus 0,

~ & a
W —— = —
de U
the surface S is broadest at z = — », where, since @ cannot increase without limit on 8§, r-r,

» aand ¥ » 2/aa/U . For the definition of 8 and 6, see Figure 206. Thus, if R is the

maximum redius of S;
R=2V°:;}—‘T, xQ=-;-(\/;2_+_R—2—a) [124g,h]
At the middle of the line of sources or at @ = ~ @/2, where r=r;, on §
zen=)/25 o (124i]
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Figure 206 — Dividing surface § for a Figure 207 — Streamlines for a uniform line
uniform line of sources in a of sources in a uniform siream. The
stream. See Section 124, heavy curre is the dividing surface

8. See Section 124. (Copied
irom Reference 7.)

The surface S is a dividing surface, and the formulas inay represent the flow past a
solid of revolution whose surface is 8. Its shape depends upon the dimensionless quantity
a/al, and its size upon the length a of the line of sources, since [124f] can be written

so that, for fixed a /al, all dimensions vary as a. If @ - 0 while a¢ remains constant, the
shape becames that of Section 121.

Streamlines drawn for equaily spaced values of /&, for the same shape of S as in
Figure 206, are shown in Figure 207. Here 29 = 0.17 a, B = 0.90 a.

Changing the signs of both U and o merely reverses all velocities and the signs of
¢ and . To reverse the solid end for end, the z-axis may be drawn in the opposite direction.
(See Reference 2, Section 15.24; Reference 7, p.61.)

125. AIRSHIP FORMS

Any combination of sources and sinks immersed in a uniform stream, as in the last two
cases, gives rise to a dividing surface which separates the fluid in the strexzm from that be-
longing to the sources and sinks. This surface can be taken as the surface o . solid body,
and the formulas for the combined field then ropresent streaming flow past this boua:: or it may
be the surface of a shell containing within it the sources and sinks. In the latter case, the
introduction into the mathematical formulas of terms representing a uniform stream serves
merely to procure satisfaction of the boundary condition on the shell.

The divicling surface will be of {inite extent provided the total strensths of sources
and sinks are equal. Otherwise it will extend to infinity, in the direction of the stream if
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sources predominate, so that fluid must be carried away on the whole, or in the opposite
direction if sinks predominate.

Figure 208 — Diagram for a source at 0 and
a compensating line of sinks, in a
stream. See Secction 125.

As a further example, suppose that sinks are distributed continuously and uniformly
along the z-axis from — ¢ tc 0 and that there is also a single source at the origin of strength
numericatly equal to the total strength of the sinks, together with a superposed uniform flow
at velocity {/ toward negative z; see Figure 208.

Let - 47 o denote-the volume of fluid abscrbed by the sinks on unit length of the

axis; a is thus a negative number and Tepresents algebraically the source density on the axis.

Then, if the volume emitted per second by the single source is 4r4, 424 = - 4raa and
;|
a=-— (125a]

The total potential ¢ and stream function ¢ at any point P or (x,®), where @ denotes
distance from the z-axis, czn be written, from [119a,b,d,f] and [123d,e],

r.+rz+aQ r+r,+a
6=0 [ubZ(l-lln -—‘———)] =U[a:+b2 (i--l-ln——‘——)] [125b]

r a r+2 r a r+rl-a

[125c]

where 52 = 4/ and ry» 7 are the distances of P from the two ends of the line of sinks or, as
illustrated in Figure 208,

IIS 1
r=(22+3%), r, =[z+a)? so2
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The.z-axis is a line of symmetry, The components of velocity are

,,I=U{_1+b2[f__i(_"._l\]} (125d)
3 al\r 1

~ 1 sz+a
N x
= b2l [—3— e ( ;= ) ] (195e]

Compare (123f,g].

On the positive z-axis 7=, r, = z+a, and

2
7, = U(-l + _ ) [125f]
z? (z+a)

Thus a stagnation point @, occurs on the z-axis at @ = I; where

12(L +a) = ab? (125g]
Again, where z2<-¢a, r==-2z, 7 =-z-a
and
ab?
g ==U (j + __.__._...) [125h)
x 22 (x4 a)
Thus a second stagnatio: point &, occurs at © = ~ I, where I, > a
and
12 (l,-a) = 2b? (125i]

Cn the z-axis, except on the segment fre 1~ a to 0, » = 0. Furthermore, v = 0 on the
surfage § whose equation is

ot . a?- (r‘--r)2 )
= 6% - — (125]]

’52=2b2(

a r ar

By expanding r, and r, in powers of @, using the binomial theorem, ard then dividing through
by @2, it can be verified that S has rounded ends at @, and @,. Its shape dapends only on the
value of d/a, while its size is proportional to b, since the equation remains satistied when b
and all linear dimensions inciuding ¢ are changed in the same ratio. The outline becomes
more slender, especially toward the rear, as b/a is diminished.

316




Figure 209 ~ Airship form constructed with use of a source and a line of sinks.
Streamlines due (o the source and sinks alone are shown above, resultant
streanlines below. See Section 125. (Copied from Reference 8.)

A7

- BT o ———
— e

e —— ———

Figure 210 ~ Two airship forms constructed by Fuhrmann.

In the upper two figures the assumed distribution of sources and sinks is plotted along the axis,
and streamiines due to them alone are shown ahove the axis; resultant streamlines in the flow past
the solid are shown below the axis. In the lower figures the calculated pressure distribution is
shown by a solid curve in compsarison Wit?l pressures as observed on a mode in air, represented by
small circles. The flow is .rom the left. Sece Section 125. (Copied from Refrrence 133.)
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Some t the streamlines on one side are shown in Figure 209, past the lower side of &
body with b,’a = 0.054.

Changing the sign of ' 1n the formulas changes sources into sinks and vice versa, and
reverses all velocities.

To reverse the solid lengthwise, the z-axis may be drawn in the opposite direction.

Cther shapes can be obtained by using varicus distributions of sources and sinks along
the axis. It is not possible to produce 1n this manner any given arbitrary shsne, but many
practical airship ferns can be imitated closely by Jividing the axis into segments and assuming
the proper source strength on cach se.meni. Graphical methods for this purpose were discussed
by Weinig,228

Two shapes thus obained by Fuhrmau?%? acs hown in Figure 210. (See Reference 1.

Article 97; Reference 2, Section 15.25; Referencr 7, j.aze 633; Reference 229.

126. SPACE DISTRIBUTIONS OF POINT SQURCES

The flow due to any cssigned distribution of point sources can be found by integration
of the formulas for a single point source. The potential is mathematically identical with the
electrostatic potential due to a corresponding distribution of electrical charges in empty space;
each unit charge in the slectrical problemr represents an emission of 47 units of velume per
second in the hydrodynamical problem.

The potential due to an axially symmetric distribution of sources on a plane can be
expressed in terms of Bessel functions. See Reference 1, Article 102, where the particular

cases of a uniform distribution over a circular area and of a distribution proportional to

(@2~+%)"% are treated.

127. TRANSLATION OF A SPHERE IN INFINITE FLUID

Conrsider a sphere of radius @ moving at velocity U through fluid that is at rest at
infinity, as illustrated in Figure 211. The boundary condition to be satisfied at the surface
of the sphere is that the fluid and the sphere must have a common component of velocity
normel to the surface, The magnitude of this component is U cos € in terms of angular
position on the sphere measured from & radius drawn in the direction ¢f motion.

A known type of flow in which the radial velocity varies as cos # and in whigh the
velocity vanishes at infinity is that of a point dipole. The radial velociiy due to a dipole
located at the center of the sphere can be written, in terms of its mowent u, as in [119h],

cos f
3

q, =92
r r

At r = a this equals U cos € for all values of @ provided x = adUy/e.
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Figure 211 —~ A sphere in .anslation.
See Section 127.

Axis of Symmetry

Figure 212 — Streamlines due to a
- moving sphere. (Copied from
Reference 1.}

Using also Equation [119g], the potent .} ¢ and stream function ¢ in the fluid as thus
found are

s /] P - [127#,b]

The radial and tangential components of velocity are

d . cosf 193¢ a3U sinn
= . — U__ R e e e I semmen pa—— 127|d
et ST TR Ty T (1270.d]
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and

0= 9%+ gg =

ab U? 3 .
) +1927ej

(1-—'— sin20
6 4

r

Cn the sphere 72 = U2 (1~ 3/4 sin?0), so tkat g has the minimum value U/2 at @ = =/2, where
the fluid is moving directly backward. At front and rear ¢ = U.

The streamlines are illustrated for equally spaced values of ¢ in Figure 219.

The kinetic energy of the fluid, if its density is p, is

m

1 x
T=;p j r2 drf g% . 97 sin 0(10=~§-pa302 11271]
) | :

a

Here, bocause.of the symmetry, a ring-shaped element of volume, represented

by 27¢2 sin 9d 0dr, has been employed. (See Reference 1, Articles 92, 96; Reference 2.
Section 15.32.)

128. STREAMING FLOV PAST A SPHERE

The flow around a stationary sphere when the fluid at infinity has a uniform velocity U
is obtained from the results of the last section by imparting to everything an additional
uniform velccity = U. VWith appropriate terms added from [119a,b), in which r cos ¢ and 7 sin 6
replace z and @, the total potential and stream function are

3 3
1
d=U (r+ ..‘.1_.) cos f, ¢p=—1U (rz-.ar_ ) sin?9 [128a,b]

972

Here, for U > 0, the flow at infinity is toward @ = 7.
Thus y =0 when 0 =y or @ = r, and also if r= a. This shows that a streamline

approaches along the radius 0 = 0, divides, passes around the sphere, reunites and continues
along the radius 0 = n.

The velocity components of interest are

/. a a®
r/,:—U\l——-) cos 0, ¢gg= U(l+-——)sin0 (128¢,d]
o 93

Cn the sphere, where r = a, 7= | g9l = 3/2 |U] sin @, so that g has a maximum value of
30U'/2 on the equator at § = #/2. Stagnation points cccur at = 0 and 9 = n.

If the motion is steady, the pressure on the sphere, by the Berroulli equation, is
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9
P=lp (U2-9%) + p, =*%-le2 (1- n sin20)+ P [12¢e]
2 P
where p_, is the pressure at infinity
Thus p=p,, at 0 = 41°49”and 2t 138° 11° On the radii 0 =0 or & = =, 7 = |7,| and
1 a3 ¥
p=m—p U2 (2 . P [126¢]
2 3 .6/
In the equatorial plane, where 3= 2/2, 9= |’70| and
1 ad a®
P=—';'p(/'2(—+ "—)-f P {(128g]
2 f3 4,.6

The streamlines are illustrated in Figure 213, on a typical plane through the axis of
symmetry, The lines drawn are equally spaced at infinity and differ by equal increments of

the quantity y/(r sin 6). The curves labeled p-p_, show on an arbitrary scale the excess of

[~

i %ﬁ%
=\

—_— I

Figure 213 ~ Streamlines past a sphere, and pressure distribution along the axis of symmetry,
over the sphere, and over the equatorial plane. See Section 128.
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prossuro along the z-axis and over the sphere for positive z, also along the y-axis, where
the prossure is plotted horizontally with negative values toward the left. The pressure is
symmetrical on (ront and rear. For this reason it is obvious that there is no resultant force
on the sphere.

The sphere can be regarded as a Rankine solid for which the source and sink, while
increasing indefinitely in strength, have come together to form a dipole.

The fornulas will also represent the flow inside a spherical shell caused by a dipole
of moment pu = «31,’2 at the center. In this case both U and p_ represent mathematical
constants.

Changing the sign of U reverses all velocities. (See Reference 2, Section 15.30.)

129. SPHERE WITHIN A CONCENTRIC SPHERE

If the moving sphere of Section 126 is surrounded by a fixed concentric spherical
shell of radius A, there are two boundary conditions to be satisfied by the field of velocity
in the intervening fluid: at r=a, 9, = Ucos §; at r= b, ¢, = 0. In order to have two adjustable
constents, let a potential function be assumed of such a form as to represent the superposition

of uniform and dipole flow, namely, from Sectiorn 128,

4 En 94
«.’>=(U’r+—)cos 9, q,=—--—-=(—U’+ --)coso
3 2 dr 3

where the angle @ is measured from the direction of motioz, and the constants U’ and 4 ate
to be determined. The boundary conditions require that

24 24
~Uy —=0,-U0'+ —=0
a3 b3

Solving for U’ and A and adding the stream function ¢ from [128b]

3U b3 3U b3
é = ? (r + —-) cos 0, ¢ = L (rz——)sin20 (129a,b)
9r2 2 (5% -ad) r

alv | »
= (——1) cos 0, ag=
p3-ad \ 3

3U b3
2 (1+ =\sino (129¢,d]
p-a3 9,3

The possibility of satisfying the boundary conditions in this way for all values of 9
arises from the choice of a suitable function for é. The sclution is exact, however, only at

the instant at which ihe centers of sphere and shell coincide. Streamlines for equally spaced

values of ¢ are shown in Figure 214.




Figure 214 — Streamlines due to a mov.ap
sphere momentarily concentric with =
surrounding stationary sphericai
shell. See Sectiou 129.

The kinetic energy of the fluid is, from [17c], in which ¢, = 0 on the shell and r=a
on the sphere,

T =

00} =

1 534943
pqu 9,d8 =~ = padU? (129¢)
3 p3.43

The integration exterds only over the sphere, where r = a, d§ = 27a? sin 0 d9.
%11 of these formulag hold momentarily only, as the center of the moving sphere passes
the center of the shell. (See Reference 1, Article 93.)

130. SPHERE AND A 'WALL; TWO SPHERES

The flow <aused by a small sphere meving in the presence of a rigid wall can be
found to the first order of approximation by elementary methods. Let a be the radius of the
sphere and z the distance of its center C from the wall; let it be moving at speed U in a
direction inclined at an angle ¢ to a line OCT drawn perpendicularly away from the wall, as
shown in Figure ¢i5. Using the method of successive approximation, let three flows be
superposed, ag follows:

7 y 2
. 7 Q
Q ) & % ar
r—7 Na Figure 215 ~ Diagram for a small sphere
7= .
4 z near a wall. See Section 130.
c’ Z40 C T
i
7, q~|
s
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1. Agsume first the flow caused by the sphere in unbounded fluid. Its potential is that of

a dipole at C or, as in Equation {127a]},

\ a3l cos 0
by = —
2 »2

where r denotes distance from € and the angle 0 is measured from a line CQ drawn in the

direction of U,
2, To satisly the boundary condition on the wall, add an equal dipole at the mirror image C*

of C in the wall, with axis C’Q” in the plane QCT but inclined at an angle » ~ & to OT produced

backward; see Figure 215. The potential of this dipole is, similarly,

]
!
|
|
|
N a3V cos 0’ i
|
|

&)= ~—
1 9
2,2
where 0 is measured from CQ°.

3. At the sphere, since a/z is smali, the partial flow due to ¢,”is practically uniform,
with components of velocity u in the direction CT and » in &« perpendicular direction CI lying
in the plane QCT where, from [127c,d], in which r=r’ =2z and 0= 0"= 7 ~a,

3 COSC a3U sir a
U= f]r'=—-a U N V=~ (]01-.:.--——
2
8 23 83

These two uniform components of flow, 1n interaction with the sphere, add a potential that may
be obtained from [128a} by first replacing U by —u and 0 by 0,, where 0, is measured from CT,
then replacing U by —» and 0 by 0,, where 0, is measured from CR, and adding the resuits.
The valng of this potential will be needed only on the surface of the sphere, whate r = a.

There its value is -
a3l 3a 1 )
<.‘>2= —~—— «~— | COoS 010050 + — COS stma
8:173 2 P

The potontial ¢, includes the variable part of ¢ '; a constant part equal to the value of ¢/ at
the center C has been omitted. but this omission has no effect upon the result to be obtained.

Now introduce also an angle w, so that r, 8, » are polar coordinates with origin at C;
lot w be measured from the plane @QCT; sce Figure 216, where P is any point on the unit

sphere about C. By projection of CP on CT and CR it is seen that

324 i




’

@ Q
L
>
! 0
AR
a r Figure 216 — Polar coordinates for a small

i
sphere near a wall.

«

~_

cos ), =cos § cos a ~sin § cos wsin o,

cos 02 =¢cos @ sina +sin 6 cos w cos a.

The kinetic energy T of the fluid may then be found by substituting in Equation [17c]
¢ =¢, + ¢, withr=aq, also g, = U cos 0 and dS = a? sin 6d6d w, and integrating over the
sphere. It is

1 1 3702 3 48 2
T=—pfpg,dS=—mpaU?| 14+ — — (l+cos®a) |. [130a]
2 3 16 .3

The forces on the sphere may now be found by means of Lagrange’s equation,

d ar) aT 0
dt\dag) dq -
where ¢ stands for any coordinate of the sphere and ¢ = dg/dt.

In terms of the Cartesian coordinates z and y of the center of the sphere, with
velocities 2 = U cosa, y = U sina,

1 3 3 a3\.
7'=— npa’ L one 22414+ — — J9y?2 |. .130b
3 "* [( Jc3)m +( " 16 xa)y 13001

For z and y as coordinates, the generalized forces @ are simply the ordinary components of
the force on the fluid, or ~X for z and ~Y for y where X and Y are the components of the
force exerted by the fluid on the sphere, respeciively away irom and parallel to the wall.

00|:~’)
Is:
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Taking ¢ = z, then ¢ = y,

df2 3 o), 3 s, 1, ,
le?npa lr‘g'—;z +-8‘np“:<.c +';'y)=-z\,

whence

2 3 a®\, 3 , a® ) 5
Xewe—pa®|[1l4— —|Z+— apU* — (2cos*a —sin“a), [130c]
3 8 3 16 2
e 3 a\. 3 a®
Y=o — pad {14 — — y+—i-np[12 — sina cosa . 130d]
3 16 3 8 2

Here , ¥ are the components of the acceleration of the sphere. The term in U2 in X repre-
sents & repulsion by the wall on a sphere moving toward or away from it, proportional to
1,/2*, or an attraction half as large on a spnere moving parallel to it.

(See Reference 1, Articles 98, 99, 137, 138; Reference 2, Section 16.30.)

Two Spheres

Instead of a wall. there may be a similar sphere centered at 0”and moving at speed U
in the direction 8’ =10, so as to secure complete symmetry of motion.

The general motion of two spheres of any size can be treated in terms of series of
spherical harmonics!; the motion has also been treated in terms of images by Hicks,?23°
otherwise by Bassett,>’ 231 and in terms of bipolar coordinates by Endo. 232

131. POINT DIPOLES NEAR A SPHERE

Consider two point dipoles located at (b, 0, 0) and (b,, 0, 0), with their axes parallel
to the z-axis but oppositely directed; iet their moments be p, p,, where p; and p, have
opposite signs. The resulting strea.n function, if the fiuid is at rest at infinity, is, from
Equation [119k],

?)«? ’52

i e [131a]
rl 7'2
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whiere

T=(y’+ 22)%, ro=lz=-5)%+ '«352]%, rp =@~ 5)%+ 2", (121b,c,d]
The stream surface for ¢ = 0 is given by
r23/r“1 =~ p,/py, OF r22/rl2 =k
where

k= (-1‘2/111)2/3 >0,

or also, after replacing r, and r, by their equivalents,

(- 52 + T2 = k(2 - 8,) + 37

or

(1= (@® +TY) +2(kb, - b)) a=kbZ -2,

This is the equation of a sphere.

Let the origin be transferred to its center. Then the term in z disappears from its
equation; hence the new values of b, and b, are such that kb, » b, and tae radius a of the
sphere is given by

2 2
kbl - 62

2 2
ac = —-1—:-]"— = kbl =b1 1)2. {1381e}

Thus the dipoles are located at inverse points with respect to the sphere; see Figure 217
in which two alternative cases are illusirated. Either b, or b, must exceed a.

The formulas may represent either, if b, > a, the flow around a sphere of radius a
caused by a dipole of moment y placed at a distance b, from the center of the sphere and
with its axis directed radially, or, if b, < a, the flow inside a spherical shell of radius a
caused by a dipole similarly plazed inside it. In cither case the 2-axis is to be drawn from
the center throug the location of the dipole; and the sezond dipoie, at a distance
b, = az/b] from the center, becomes a fictitious one that can be regarded as the image of

the first. If y, > 0, the axis of the dipole is directed outwurd from the center. The potential
and stream function are
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Figure 217 — Point dipole g, either outside
or inside of a fixed spherical surface.
See Section 131,

3 3
o z - 61 a z - b2 " 2 1 a 1
= el Y=o - |5 -
3 ] 3 3 b 3
l_ h 1 r 1y 1 ry
(131f, g}

Here ¢ is given by Equation [121a], with k taken from Equation {131e], and ¢ is found by

comparison with Equations [119k] and [1190].
The velocity at any point can be found by adding vectorially the velocities due to

the twe dipoles.
On the sphere itself r,/r, = ¢/b; by similar kriangles, hence ¢ = 0 and

a? - b2 ,
1 *i 2 .2 "
—= ,ry=(a"+ b -2 ab, cos )",

=7

1 ry

where 0 is the polar angle at the center measured from a line through the dipole. Thus on

the sphere
i d¢ 2 2 cin @
. — — = - el Y
q iy 3(a* -8l )y, < {1314]
1

and, since the velocity is tangential to the sphere, ¢ = |gpl.
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If the dipole is at the center of a spherical shell. however, a limiting ferm of ¢ is
needed; for, as 6, » 0, &, » =, Expanding by tie binomial theorea in descending powers

of b2,
-3/2 ~3s2 3 -5/2
-3 2 L2 2 2 2
7‘2 =(b2—2b2w+.‘2} +w) :(b2) --E-(bz) [+ N
(-2byz+a? + &%) .o = b3 4307 2w,
hence
b3 (@ =b))ryd - -a® b, -2a02......

since b, &, = a®. The term -¢™® b, contributes a constant term in ¢ and may be omitted.

Then, as b, -+ 0, Equations [131f, g] become

1 2r 2(1 1 o
$=py (= +=)vos 0,9 =~y T — - — (131, j1
r2 a3 \7,3 03

. . %
with use of polar coordinates at the center of the sphere such that r = (22 +'a72) , &=rcos 0.

All other terms in the series vanish as 5, » =, 'The components of velocity are

ad 5 1 1 d¢ 1
9,='E= "y ';5—-;5 cos 0, qo=——--‘9—()-=yl(7- +-;—3- sin 0

{131k, 1]

Thus the presence of the shell superposes a uniform backward flow, with components of
velocity -2y, cos 6/a% and 2y, sin 0/a3, upon the flow due to the dipole alone.
The force & on the sphere or shell is of magnitude

1 24np(13b1#12
=— pfy”° cos 7a” sin = im
1a 212 6 (27 a® sin 0d6) (131m]

4
(b2 - a?)

(The integration is long bui easy.) The force tends to draw the nearest part ¢: the sphere or

spherical shell toward the dipole.
Streamlines for equally spaced values of ¢, on a typicai half-plane through the axis of

symmetry or z-axis, are shown for an exterior dipole as solid lines in Figure 218.
(See Reference 1, Article 96; Reference 2, Section 15.43.)
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' b, Axis of Symmetry

————

i'igure 215 ~ Streamlines due to a point dipole at b, near a sphere. See Section 131.

132. LINE OF TRANSYERSE DIPOLES

Suppose that peint dipoles are distributed continuously along a line with their axes
lying perpendicularly to the line but in a common plane. Let the z-axis be taken along the
line and the y-axis in the direction of the dipole axes, and let the dipole strength pet unit
length be v. Then the potential due to the dipoles on an element dz” located at 2 = 2, as

found by writing in Equation [119s] p = vde’, 2, = 2%, y, =2, =0,l=n=0and m =1, is

ds’
dg = — » @ = (% + 2%)

@2+ (z - 272"

(132a,b]

The total potential at (z, y, 2) is then fd¢ which can be evaluated when = is known as a

function of .

T T ey A SR F

- e

e F




If v is constant between 2 = ¢, and 2 = ¢

. 2 and zero elsewhere,

é ydz’ vy z-2’
a y = e

- 2372 ~2 172 ,
¢, (&2 + (z - 23 07 %%+ (2 - 2)2) x'me,

Let w denote an angle about the z-axis measured from the zy-plane, so that 2, @, w constitute
cylindrical coordinates. Then y = & cos « and

v
¢ = — (cos 0, - cos 0,) cos w (152¢]
@

where 0, and 0, are the angles belween the positive z-axis and lines drawn to (2, y, 2) from
the ends of the line of dipoles; see Figure 219.

/ (5, 5, 0) = (2,9, 8)
i lv Figure 219 — A line of transverse

a',w / o N point dipoles. See Section 132.
02
8 /&o'; \
T

~

2 2
¢ =— cOS w= d (132d]
@ '52

as for a uniform line dipole; see Sections 15 and 37.
If the dipoles extend only over the positive z-axis, 0, = 7 but 6, = 0 where @ is
measured from the z-axis to a radius drawn from the origin, and

v v d
¢ == (1 +cos 0)cos w=— (1 + --—)cos ) {132¢]
@

@ r
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2 1/2 . .
where r = (T~ 4 zz) s or, if r, 0, and » are employed as polar coordinates,

cOs . {132f1]

(See Reference T, page 70.)

133. TRANSVERSE FLOW PAST A SOLID OF REVOLUTION

Let the uniform line of transverse dipoles on the z-axis as described in the [irst part
of the last section be immersed in a uniform stream having velocity V toward negative y.

For the stream, ¢ = Vy = V @G cos o, hence the resultant potential is, from Equation [132c],

é = [1' @+ :V, (cos 0, - cos 02)] cos w. {133a]

w

Both the zy- and zz-planes are planes of geometricai symmetry; the equipowntial sur-
face for ¢ = ~ &, is the mirror reflection in the za-plane of that for ¢ = ¢, so that the stream-
lines are symmetrically disposed. A third plane of symmetry is the bisector ~ the segment
¢, ¢,. All of the equipotential surfaces are asymptotic at infinity to planes perpendicular to
the y-axis; that for & = 0 is the zz-planc itseif, on which o = % 7/2.

On any plane through the line of dipoles or the 2-axis, the trace of an equipotential

surface is a curve defined by

é

COS w

Ve '+ ,l-—:, (cos 0, - cos 0,) = = constant, (133L])
(4]

Clearly the same geometrical set of equipotential curves cceurs on all of these planes but
the value of ¢ attached to a given curve is proportional to cos w.

It suffices, therefore, to study the curves on the zy-plane, where |cos w| = 1.
Assume that V > 0, v > 0. Then, since cos 0, -cos 6, 20, it is clear that, on the part of
the plane on which y > 0, & + « both as y =@ + « and as y » 0 with « lying between ¢, and
¢,y 50 that 0,+0,0,~m Hence, in particular, on the line r = (c; +2,)/2,8 relative mini-
muan of ¢ must occur at some point @ see Figure 219. From the character of the flow caused
by dipoles, it is clear that the fluid will flow away from @ both toward > 0 and toward
z < 0, and hence that the potential must decrease in both of these directions. The point @
is thus a saddle point for ¢, and hence also a siagnation point, since the w-component of the

velocity vanishes by symmetry. On the ha(f-plane where y < 0, symmetrical relations occur.
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The equipotential curves will thus have the general character of those shown in Figure 220,

where the axes are so placed that ¢, = - ¢,. The broken lines show the cquipotentials that

1
meet al @.

Figure 220 — For a uniform line of transverse point dipoles in a stream flowing
perpendicularly to the line, traces of the equipotential surfaces are shown on a
plane drawn through the line of dipoles and parallel to the stream.
The equipotential surfaces may be those of the transverse flow
past a certain solid of revolution which is represented, in 2
section through its axis of symmetry, by the heavy closed
curve. See Section 133. (Copied from Reference 7.)

The streamlines will be three-dimensional, in general, but in the zy-plane they will be
plane curves orthogonal to the equipotontial curves. Clearly there will be one streamline
which, approaching with y decreasing, divides at Q and passes around the line of dipoles
along a closed dividing curve C, then re-unites at the other staguation point and proceeds to

= — 0. The same geometrical curve C can bte drawn on any plane through tnc 2-axis: and on
all planes it will have the property that at any point the compr aent of the veiocity lyin, iw
the plane will be tangent to the curve, since both this component and the curve ¢ must be
perpendicular to the equipotential curve through the point. The sarface of revolution generated
by rotation of the curve C about the z-axis is thus a dividing surface and may be taken as the
surface of a solid body. The formulas then represent the transverse flow past this body, or,
also, the flow caused by the line of dipeles inside of a similar shell.
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An oxample of the equipotential curves in the zy-plane is shown in Figure 220, where
¢, = ¢, ¢y = - ¢ and the heavy curve is C or the trace of the dividing surface of revoluticn.

Further mathematical details will be given only for the case in which the line of
dipoles or.ends to infinity in one direction.

Half-Infinite Solid of Revolution

Let the dipoles extend from z = 0 to z » . Then 0, = 8, where 0 is the polar angle
at the origin, cos 0, =~ and

¢ = [V @+ —:—_ (1 + cos ())] cos w. (133c]
@

1/2 )
Here cos 0 = a/r, r = (@2 + :z:z) , @ =rsin 0. Hence,

a o
g -2 s, (1334)
x Jz .3
d
Qo= — __?_ = [_V 4 .'— (1 + COS 9 + sin? 0 cns 0)] COS w, [1330]
w J0& ~2
1 96
q, =-— 2 olve £ (1 ~cos )| sin . (1331]
@ T dw =2
or
d 1 4+ cos 0
g, =- —d) = [~V sin 9+ i ———— | cos o, {133g]
Jr 22 sin 0
1 g » 1+ cos#
gop == — —é- e [-Vecos 04 — — cos w, (133k]
’ r 90 2 sin? @
1 J » 1+cos e .
g =~ — ¢= Vrl———-—-(—\sinm. (133i]
@ rsind Jw p2 sin? @ /

The speed g may be found from g% = qf + 93’7'+ quzj = qr2 + qg + qj.

As z - o, 70, 0+ 0; hence ¢, » 0, and, at & = Jev/v, 9= O while g, =2V sin w.
The streamlines are thus tangent at z = + o to a cylinder of diameter 2¢/2v,V. The solid of
revolution must, therefore, be asymptotic to this cylinder.

Some of the equipotential curves and streamlines in the zy-plane are shown in Figure
921; the heavy curve is the ontline of the solid. The equipotential curves are extended in-
ward toward the line of dipoles. (In this figure V is denoted by U.)
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Flgure 221 — Eimilar to Figure 220, but the line of dipoles and the solid of revolution
extend to infinity. A few streamlines outside the solid are shown by broken curves.
See Section 133. (Copied from Reference 7.)

An attempt to precuce forms resembling actual airship hulls more closely was made by
Lotz,33 “<ing 2 nonuniform distribution cf dipoles on the axis, but point sources spread over
the surface were found to work better. (See Reference 7, page 69.)

134. POINT SOURCZ NEAR A SPHERE

Problems involving given boundary conditions can often be solved by superposing
solutions satisfying the given conditions. Sometimes the process of superposition involves
an integration.

The field of a point source, for example, is easily obtained by integrating that of a
dipole. This comresponds to the fact that physical dipoles, each consisting of a source and
equal sink close together, can be laid out in a row so that each source is canceled by 2
superposed sink, except at the ends of the row.
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In this way a dipole localed near a sphere, as in Section 131, can be replaced by a
point source. In the formulas of Section 131 let 4, be replaced by z"and x, by - Adz . where

4 is a constant. Then the flow 15 represented due to a dipole of moment ~Adz/, located on

the element dz,’of the zaxis at the position >\ Let such dipoles be located on all clements

from z,"= ¢, to + «; and integrate to obtain the flow due to all of them. The potential ¢ ard
stream function ¢ thus obtained are, from Equations [131f, g],

rd rd
. p ol -2 a \3 ¢-%, o’
== -{ - | ax
f 3 ’ .3 5
n zy

1 L 27

where

4 1/2 ’
y = az/ml, r =z - :z:l’):Z +3 "7, ry =z - .'ar:2')2 + %)

1/2

2

Here z and & are the coordinates of a fixed point in space and are constant in the integration;
see Figure 222,

3]

{z, @)

e N2 .
7 72 'l fl
,
\
L4 Pp—
4
¢y 2!

Figure 222 ~ See Section 134,

The first term of the intogral for ¢ can be e /aluated at once. In the second term take
z, as the variable of integration with limits 0 and ¢, where

¢, »a/e, [134a]
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and integrate once by parts. Then

2 dz.’
1 a 1 1 &)
¢=,1_.+.__.__..f -— [134b]
r c, r a r
1 1 2 ) 2
vhere
172 172

r, =z~ 01)2 + 330, r, =l(z - 02)2 + 3%

This is the potential due to a point source of strength A located on the z-axis at z = ¢,
together with that due to another source of sirength ad/c, at 2 = ¢, and a line of sinks of
uniform strength — A/a per unit length extending from the origin to the point = c.. The
second source and the line of sinks may be regarded as the image of the first source in the
rigid sphere of radius a. It must be assumed that ¢, > a.

Evaluating the last integral, and treating ¢ similarly and dropping a useless constant

term,
1 e 1 1 T+ 1 a 1 1 ’*'2'*02\'
¢=4Al— + — — =—In ———— | =4|—4+ — — -— 1 ,
\.'1 ¢, 1, e r,+%=-c, ry e, 1, a T4, -C.
1134cl
z-~c z-c r-r
1 a 2 2
U=A + - - ,r=x/z§ +o° . {134d,e]
A ¢ a

These formulas represent the flow in fluid that is at rest at infinity, caused by a
source outside a fixed sphere of radius a. With the origin at the ceater of the sphere, the
source is on the z-axis at ¢ = eHT=VY +2 and denotes distance from the z-axis. If
A < 0, the source becomes a sink and all velocities are reversed.

On the sphere itself r = a, r,/r, = a/c, = ¢;/a by similar triangles, z = a cos 0 and

(24 a2 5 gy /2
r, =(a® + ¢ - Sac, cos O)1/

in terms of the polar angle 6 measured from a radius drawn toward the source. Hence, on the
sphete, ¥ = -~ A, which shows that the sphere is a stream surface, and

9
A uC,) a+r2+c2

: (134f]
a \2‘2 a+r2-02
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also

—_ ———-—\ sin 6, [134g]
/

and the particle speed is ¢ = {gg.

In Figure 223 streamlines are drawn which leave the source in the same plare in
directions 22.5 r:2g apart, and eventuaily become parallel to these same directions, which
are also indicated in the figure. (Sec Reference 1, Article 96; Reference 2, Section 15.40.)

Cy ¢ Axis of Symmelry

Figure 223 — Streamlines due to a point source at ¢, near a sphere. See Section 124.

135. BOUNDARY CONDITIONS IN RCTATION

The general boundary condition, that tiie fluid and the boundary must have a common
component of velocity normal to the boundary, can be put into a useful special forrm when the
boundary is rotating as a rigid body.

Let the boundary rotate at angular velocity », about the z-axis. Then any point on it
located at (2, y, 2) is moving parallel to the zy-plane with a linear velocity o, (22 + y?‘)”z;

and, by similar triangles, as illustrated in Figure 224, its z and y components of velocity are

U=—w:y,V=wzz,lV=0
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Y
7 Y2
7
s N Figure 224 ~ Velocity due to rotation.

The comporent @, normal to the boundary, at a point on the boundary where the direction
cosines of its normal are /, m, n, is then

Q,=lW+mV +2lW =0, (mz~1ly). [185a]
For rotation at velocity »_ about the z-axis, or ®, about the y-axis, similarly,

Q, = @y (ny ~ m2), §, = 0y (lz - nz). [135b, c]

The three types of rotation may be superposed in order to obtain the most general type of
rotation about an axis through the origin.

The normal component of the velocity of the fluid, on the other hand, in terms of its
cartesian components u, v, w, is

g, = lu+ mv+ nw.

Equating ¢, to @_ gives as the boundary condition for the most general case
lu+ mv+nw=ow, (ny-mz)+ 0y (lz = n2) + 0, (mz - ly). [135d]

It the equation of the surface of the boundary is given as

f (2,9, 2) =0, [135¢)
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the direction cosines of its normal at any point z, y, 2z can be found as

df df af

l=bk—  , m=k—, n=bk—, (1351, g,h]

dx dy Jz

where

2 -1/2
(2L (20 ﬂ)] _
k= [(01‘) +(0y) + (\02 (135i]

in order to make 12 4 m? + n? = 1. The sign of & must be determined by inspection.

For, if the point is displaced over the given surface through an elementary distance
ds, whose components are dz, dy, dz, in the direction of a tangent whose direction cosines
are 1/, m’ n’, from Equation [135¢]

af af af
df=dx — +dy — + dz — = 0.
dx dy dz

Substituting here dr = I’ds, dy = m’ds, dz = n"ds and multiplying through by k/ds,

) 9 9
i 2w L 9
dz Iy dz

Now a lire can certainly be drawn through (2, y, 2) whose direction cosines are I, m, n as
defined by Equations [135f,g,h]. Then, from the last equation, {‘l + m‘m + n’n = 0, so that
the line thus drawn is perpendicular to the tangent whose direciion is ({’, m%, n”). Since the
latter may be any tangent to the surface at (2, y, 2), the line (I, m, n) must be the normal to

the surface.

136. GENERAL FORMULAS FOR ORTHOGONAL CURVILINEAR COORDINATES

It is convenient at this point to generalize certain ideas and {ormulas so that they may

be used with any type of orthogonal coordinates,

A coordinate system may be regarded as set up by means of three families of coordi-
nate surfaces. The surfaces of any one family do not cut each other, and are numbercd with
the values of one of the courdinates. Usualiy tite three surfaces that intersect at a given
point meet there orthogonally.

For example, for Cartesian coordinates the surfaces consist of three sets of paraliel

planes. For the polar coordinates defined in Section 7, the surfaces are concentric spheres
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for r, cones for 0 and planes through the axis for w. ffor cylindrical coordinates as defined in
Section 7 the surfaces are planes perpendicular to the axis for @, cylinders for @, and planes
through the axis for «.

At any point there are three coordinate directions, in each of which one coordinate in-
creases while the other two remain constant: see Figure 225, These directions are tangent
o the curves of intersection of the three comdinate surfaces through the point, If the coor-
dinates are orthogonal, the three coordinate directions at a given point are mutually perpen-

dicular, and they are also perpendicular to the corresponding coordinate surfaces.

Figure 225 —~ Diagram illustrating coordinate directions. See Section 136.
When the coordinate A of & point is given an elementary increase 8 while tne other two

coordinates remain fixed, the variables z, y, and 2 receive cortain elementary increments which

can be written

5 9% sh. 5 %Y sn 8 92 s
L .9 - 22 s
AT Tn 0% OUNT 0 O 9T e

The total displacement of the yoint is then

1/2
55y - (82 + 8yl + 820)"

and

8y [rax\2 fay\2 az\2]'"
5\ an an ax
341
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Furthermore, let I, m, 2 be the direction cosines of the coordinate direction for A, which is
the direction of the displac ment 6sy. Then

dzy = l8s), 8y) = m 35y, 02) = nds,.

Hence

SA ox AN A SA Jdz
-2 Z y Mz e -:‘E/- yR= —— —, [186b,c,d]
881\ 3 bSI\ oA 63/\ oA .

If the courdinates are orthogonal, I, m, n are also the direction cosines of the normal to the
surface A : constant. The ratio 8s,.8A is casily calculated frowa the formulas connecting the
coorainates with 2, y, 2.

For cartesian coordinates this ratio is unity. For spherical polar coordinates r, 0, @
as defined in Section 7, 8sr,’8r =1, 853p/60 = r, 88(" /Bw = rsin 9; for, increasing w by dw, for
example, displaces the peint (r, 0, ) through a distance 7 sin 08w along a circle of radius 7
sin 0 whose axis is the polar axis. For cylindrical coordinates z, @, w as defined in Section 7,
gs . bz =1, 85587 = 1, 5Sw.'8w = @, since the variation o produces a displacement Tow
along a circle of radius .

In a fiow having a velocity potential ¢, the component of the velocity in the coordinate
direction of any coordinate \ can be written, from Equation [6f],

gy == — = — — [136e]

since in this ditection ds = &s), d$ = 5A I/
see Figure 225. If the three coordinates A, p, v are orthogonal, the magnitude of the velocity
g is given by

=gl +qr+ql.

A general form of the Laplace equation may be obwined by expressing the continuity
equation for an incompressible fluid in terms of the orthogonal curvilinear coordinates A, p, v.
Consider the element of volume bounded by the six surfaces that are defined by the_ following
equations:

A’-‘-Al p:‘;l V=Vl

A=A +0N u=p +8p vm=uy +Ov

where A, p;, v, refer to any given point in vpace. If 8A, 8y, 8v are small, the element is
sensibly rectangular in shape, as illustrated in Figure 226. Since the fluid is assumed to be

incompressible, as much fluid must enter this element as leaves it.
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Figure 226 — Illustrating the equation of
continuity in terms of the orthogonal
curvilinear coordinates A, p, v.

(Aplllpl’l)

Consider first the pair of faces approximately perpendicular to the coordinate direction

for A. The face at which A = A, has sides of length 8s , 8s, and an arca 63“ 8s,. Fluid is

o
entering the element across this face at a rate ¢ Ssﬂ &8s, The rate at which it is leaving the

element acress the opposite face, on which A = A, + 8A, can be written

d
ax 83’1 s, + A Py (9), 58” 8s,).

The difference hetween this expression aud the last, or

d
SA Y (9, 83“ 8s,),

is the net rate at which fluid is leaving the element by passing across this pair of faces.
Treating the other two pairs of faces in a similar way, and adding the three expressions
thus found to obtain the total rate of outflow, which must be zero, it is found that

d d d
S\ T (g 83# &s,) + op —871 (gu s, bs)) + v ey (9, sy, 83“) = 0.

Dividing by 8A 8u v and noting that &), u, 8v are constants,

3 [ 93, 8s,, o [&s, 93y 3 [0s) ﬁsll
- — ¢+ — |- — + == — = 0. [136(]
A\ ép v I\ du\ v BA T dv \ A b v

This is the equation of continuity for an incompressible fluid expressed in terms of any
orthogonal coordinates.
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If the motion is irrotational, substitution in the last equation from such ~quations ss

{13601 gives the Laplace equation for the potential ¢:

——— | ——— —— ————— —— ] ] e | —— — —— —— ——f ——— —— —— —

i 4

A\ dp &y Osy dA du\ 61 BA 38“ dan dv\ 6\ du 8s, dv
(136g]

In some problems the mass of fluid under consideration is actualty honnded by & eoor-

dinate surface. For example, let A be constant over the boundary. Then, provided the fluid

at infinity is at rest, formula [17¢] for the kinetic energy T of the fluid can be written

1 ‘ 83“ 58;_ 1 r SA 58” BSV o
—Z ggydpdy| = —p| |22 —£ 2 o 22 0l 136k
Ssu 5y LAk 2"J 5s, ou ov O ax Y [136h)

-~ '
wnere p is the density of the fluid and the surface integral extends over the entire finite
boundary. For, the element of aree on the surface dS can be taken in the form of an elementary
rectangle with sides drawn in coordinate directions, =o that along two opposite sides p
changes by du = 8y, and along the other two v changes by dv = 8v; see Figure 225. Thus d§

can be replaced by the area of this rectangle or

Ss" s, = (3&’1/511) (8s,,,/0v) dpdv.

The normal component of the velocity is ¢, = £ ¢, where g, is given by Equation {136¢).
The sign in this latter equation is necessarily the same over the coordinate surface; and the
abzolute value ~f cthe integral is taken because T is necessarily positive.

For axisymmelric flow, the angle o around the axis of symmetry is usually employed
as one orthogonal coordinate: the other two, say A and p, then function as two-dimensional
coordinates on any plane drawn through the axis. Any orthogonal coordinates may be used for
A and . The following relations between the A and p components of the velocity and the axi-

symmetric stream function ¢ may be noted:

1 6p d¢ + 1 0N dyY
gy =F = — —, o=t - (1361, j
‘A w 53“ i l ‘@ &sy OA ’ 3L

where @ denotes distance from the axis, which may be expressed in terms of A and p. The
proper sign to use in these equations is easily chosen in a given case, or the following rule
may be used: at a given point, the upper sign is to be taken in both equations when the coor-
dinate direction for A is carried into that for p by a rotation of 90 deg in the direction from the
assumed positive end of the axis of symmetry toward the point as in Figure 227: otherwise,
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(A48\, )

Axis of Symmelry

Figure 227 — Relations in axisymmetric flow.
See Section 136.

the lower signs are to be taken. The equations are easily obtained from the definition of ¢,
as given in Section 16. For example, the flow between two circles drawn with the axis of
symmetry as axis and through two points (A, p) and /X + 8X, p) is 2r6y = 2 2:@’331\9"; insertion
of 8¢ = X d¢/IX and division by 27335, gives Equation [136]].

If a velocity potential ¢ also exists, it follows by comparison of Equations [136i,i] with

Equation [136e] and its analog for ‘A that

8\ 4 1 6p 0 op 9 1 6\ 0
5. 'j':i:_lx—‘/'l' "_¢=;:_"—<‘/I“- [136k,1]
Sy dA © 88# du 83# dy @ Os) 9A

The signs are explained under Equations {136i,j}. Because of the symmetry, the third term
in the Laplace Equation [136g], in whick now v = w, disappears. A corresponding equation
for ¢ is obtained by substituting for d¢,’0A and d¢,’dp from Equations [136k, 1] in the identity
024 /3udN = 024 /ONdy;

0 (L %% o ay) (1% 5 oy

— ] —— —— — —

+ — | = = 0. {136m]
A\ @ &p 8sy, GA dp\ @ B 58’1 du
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137. OVARY ELLIPSOIDS (OR PROLATE SPHEROIDS)

Problems involving an ellipsoid are most easily handled in terms of some form of ellip-
~oidal coordinates. Special vy pes are used when two axes are equal.
For an ovary ellipsoid, or prolate spheroid, the prolate-spheroidal coordinates ¢, p, w

are most conveniently defined inversely, thus:

r=kply y =T cos w, 2 =T Sin w, (137a,b, ¢}

7

172 1.2
TR -4y, (137d]
where & is an arbitrary positive consta.. and positive values of the radicals are intended. Thus
Pty e PR ({2 + 2 =1). {187¢]

Here o is an angle representing position about the r-axis; ¢, p, and w are dimensionless,
whereas £ represents a fundamental length. The coordinate surfaces for {and p are confocal
ellipsoids and hyperboloids of revolution, with foci on the z-axis at & = £ £; their equations,
obtained by eliminating either g or ¢, are

3‘2 52 1.2 —-62
yo =1, - = 1. (137, g]
kK22 K- K2 B a-ud

The traces of the coordinate surfaces on any plane through the z-axis are confocal el-
lipzes and hy perbolas; it was seen in Section 61 that such curves cut each other orthogonally.
It will be simplest to treat the two halves of such a plane as separate planes, distinguished
by complementary values of w. On each half-plane either x and @or {and g then serve as
single-valued coordinates and & > 0. Convenient ranges of values for { and p, as indicated
in Figure 228, are: 1 ¢ {, -1 gpu g1,

The coordinates ¢, u are simply the elliptic coordinates of Section 82 in disguise:

>

{ =cosh & pu=cos y, and here k4 = ¢. Formulas for and g in terms of z and y can be written
down at once from Equations [82e,f].

The semiaxes of any ¢ ellipsoid and its ellipticity are

2

1.2
a’ =k b =k(P-1) T, e’ =1¢ (157h,i, j)

In terms of these, £ = a’p, @ = b%\/1 - 12, Also, k =a’c’ On the r-axis, for @ 2k, p=1,

x=k{ for g-kyp==~1,2==-k{ Forlzf <k, {=1,a"=kand z = kp. On the w-axis,
~ . 72

p=0and &=k 1.
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Figure 228 ~ Choice of signs for
prolate-spheroidal coordinates.
See Section 137.

s . _ 2172 2 21/2
Toward infinity, { » « and, approximately, & = £¢ (1 - 1) and r = (2°+@ =k{,

so that { = r/k, p = @/k{ = x/r = cos 0 in terms of the polar angle ¢.
The elements of distance in the coordinate directions, calculated from Eguation [136a],

are

222 1/2 22,2 172
85y =k s 8¢, 8s, =k s Su, [137k, 1}
42 - 1 1 - “2
1/2 172
8s, = Ww =k (-1)""@a- 1) / Sw. {137m]

The coordinate direction for o is perpendicular to the plane throngh the z-axis; that for {is
perpendicularly outward across the ollipsoids, that for yx is tangential to them and from u< 0
or # < 0 around toward p >0 or z > 0. These two directions make argles 04, 0‘1 with the
positive z-axis such that 0 < Oég 7y —w/2 < 0# < #/2, and, from Equations {136b,c,d],

1/2
2
-1
cos 0§== - sin 0” =p i i ) . (137r]

8¢ ¢ Su I dw ¢
"5 WM et 5 oo [1370,p,q]
w
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Laplace’s equation for the potential ¢ becomes, from Equation [136g],

o ) gl A 22 92
‘[‘gz -0 ‘—WL]‘ [“ - %) '—'} - .0 (1370
I8 ()g Jll (1 - 1:2) (:2 - 1) (90)2

and the antisymmetric stream function ¢, defined on the basis of a positive asis drawn toward

1= 1, according w Equations [136k, 1], is related to & as follows:

r,—£=;.-(1-,,-)—— , — = k(P —. [137s,1)

2
— =1,a>b. (137u)

Then its eilipticity is e = (a® - bz)uz/a, so that b = a /1 ~ e2: and for this cilipsoid
a’=a,b"=b,{=¢ =ak=1/e. Thus k=eca= \/-rz_é—-:—l;-i, and on this ellipsoid
z=ap, d=b(1~p?)

FFive cases of the flow around the solid ellipsoid will be treated. In each case ¢ as
stated may be verified to satisfy Equation [137r], and ¢, if it exists, to satisfy Fquavions
{137s,t]. The general case can be constructed by superposing flows of two or more of these
five types.

Case 1. Translation of a Prolate Spheroid Parallel to its Axis of Symmeiry at velocity
U, toward j = 1, with ¢ = 0 in the fluid at infinity; see Figure 229,

1 + 1
¢=9lkUu(—; {ln i—l -1), [137v]
1 +1
b=~ g KU (-1 -4 ol s, (137w]
2 2oy 20 ¢t
4 ¢ ov1\7! -1
0 1 e 1 l+e
= R P - - = In— . (18]
2 - 2 Go-1 1 - 2 2 1-e
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Figure 229 — Streamlines due te translation
of - nrolate spheroid in the direction cf ponl * $ouel oz

its axis. The foci are shown by dots. 1
See Section 137, Case 1. ,\\v((tl\
A Lo

A \\

Now, for any number £,
1 1 1 1 1 \°!
lnE-L:ln 1+—\-In 1-——,—5-—— = —{l - — s
&1 ¢ a1 e\ g

hence, expanding, for |&] > 1,

Lt 11 1 1 1 1 1 L
n m e ek e st e L L
E-1 & g2 38 4pt 54 £ 22 38
1 1 2 2 9
- ——  a— =—+——";+'—"ooc. [137y]
18 58 § 38 58
11 1
£ [137z]

Hence, if ¢ » 0 and thus {0 - o, €3 7, =9, /Cg =(2/3 4. -)’l » 3/2. Again, as
¢~ 1and ¢~ 1, both In (1 + ¢) and In (1 ~ ¢) become numerically negligible in comparison

with e/(1 - ez); hence g, » 0, ¢, /(1 - ez) -+ 1.
Toward infinity {» « and, from Equation [137v], since {~» /% and k = ea,

1 1 cos 0
$=9,kUp (—-? +oeee ) = — e3 9 v approximately.
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Thus the flow becomes that of a dipole of moment 3 9, a® U.’3 located at the center of the

ellip' cid. if ¢ 1= small, the coefficiert e3 94 ‘3 becomes 1,2, as for a sphere; see Section 127.

The velocity components are ¢ = 0 and

1/2

2 -
-1 1 |
{1(:’{,1 Ul‘ -§‘2-—2 —-—24 - ’;)— In ’+1 [} []370.']
) \s’ -n ¢-1 - ¢-
2\ 172/
i-p° ! ¢+ 1 \
=~g U —¢Iln—=——-11. (137"
=% 2o p 2 < (-1 / :
On the z-axis, p=%1, |2l = k¢, ¢ = |u| and
k 1 z| + &
u.—.iq =glU —-lfl—— - — lnu+—- H [1370']
¢ 2o 2 lel-k

172
on the equatorial or yz-plane p =0, @ =% (%2 -1) / , ¢ = {u| and

1 Vaﬂ + k2 + k& k ,
u=q"=—glU ;—ln - , [127d°]
= ek -k  Jol + K
on the eguatorial circumference of the ellipsoid itself {= { =1/e and
U(ll e ) [137¢"]
u=q,=-9 > nl_e—c . e

A few streamlines for equidistant values of ¢ are shown in Figure 229. Here
a’'b =2, e=0.866, g, = 0.466.

The kinetic energy of the fluid, as found by substituting {, p, @ for A, p, v in
Equation [136h], using Equations [137k,1, m] and [137v], £ = ae, 5 = o2 (1- e2),
j'i pldp =273, {)2” dw =2, and setting { = { = 1/e, is

3
e’ g,
np ab? U2 - -1/, (1376

1-¢2

T =

| w

Case 2. Flow Past a Prolate Spheroid Parallel to the Axis of Symmetry. Let he tluid
at infinity flow at velocity U toward p = - 1. Adding, from Equations [119a,b], Uz to ¢ and

Ua?,2 to ¢ as given by Equations [137v, w], to represent the superposed uniform flow,

¢ = kUpy [(: + g, (% lIn gii - 1)] , [137g']
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1
== k20 (-1 (1 -4 [1"91(

>-] (137h "]
2 " ¢-1)]

Hence ¢ = 0, and, if a prime denotes values as given by Equations [137a 4 bl

1/2
1= 2
Uz:( - "2 . [137i%j ).
¢“ -

172
’ 42_1
10=9¢-Unl- » Iy =

2 2
-

on the z-axis and in the yz-plane ¢ = u} and u = «* =~ U.

On the ellipsoid itself, where { = $o = 1/e, ¢ = 0, so that this is a stream surface.

Also, 9r= 0.¢-= |’1;‘| and

172
9, =
i
-1\ 4t

2 2

a” -z

2_,2,2

1/2

) , {137k’]

since z = au. As {j =+, €0, e3 g, ~3/2, and 9~ (8/2) U Ja® - 22 /a, as for a sphere.
As{-+1l,e+1,9, 1~ e? and 9y~ = U; the ellipse has then become a cylinder.
Some of the streamlines, for ¢ = 0.866, g, = 0.466, arc shown in Figure 230; they ure

selected to be equally spaced at infinity. The excess of pressure above that, in the stream,

a

\ Axis of Symmetry

—j\\&_—://’_

—

-t} \\_;/_
——— e ——
g —_——— e

Figure 230 — Streamlines for flow past a prolate spheroid in the direction of its major axis.
The pressure is shown along the axis, over the sphevoid and outward along a minor
axis. The foci are shown by dots. See Section 137, Case 2.
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for steady motion, is also plotted us p - p_, on an arbitrary scale. It is shown along the
raxis, then over the ellipsoid, where p = p_ at x = 0.8074, and along the g-axis, where
negative values are plotted horizontally towerd the left.

Case 3. Translation of a Prolate Spheroid Perpendicularly to Its Axis of Symmetry
at velocity V toward positive y or « = 0; see Figure 231.

1 1
b= h V(P _1)”2(1 -,12)”2‘: ¢ ! In 5:'1"] cos »,  [1371°)

4'2_1 2 C:-
2 o -1 2 \ -1
{ Go* - ¢y =2 1 1+e e(l -2¢%)
kl = ? ln 1 - = ?2' ln 1 - . [137m']
2%l - R S

As e~ 1, and g’o-»O, the logarithmic term becomes unimportant and 4, 0, lz]/(l —e2)-»1.

As e+ 0 and {; - =, e hy » 3/4, as appears from Equation {137y] and the expansion,

42_2 -1
0 1 1_3\ TR R S [137n ")
Gu2-n S\ & & o &
@)y y
=| 6 v
=0 g ,,'56\
t=bo
7 V1b
[ Z -

p==1 Axis of Symmey p=1

,/Q .._0__/
I\ r=
2 ,/‘(‘ w=T"T

v

Figure 231 — Diagram for translation of a prolate spheroid in the direction of a minor axis.
The foci are shown by dots. See Secticn 137, Case 3.
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s}

1,2
Toward infinity £ r/k = e, (¢2 =13 '~ » ¢ and, trom Equations 137y, z),
approximately,

1/2 cos 2 1
A W A [1370°)
42 3 I‘J

== hkV(-pud

e to

since & = ae. The flow is again that of a dipole, but this time with its axis in the y direction;
and for small values of ¢ agreement with the result for a sphere is obtained, since then
2 h, /8 » 1/2.

The velocity components in the coordinate directions are, from Equations {1370, p, q}
and Equations [137k, 1, m],

1-x2\ Y 2 _

ar=hV £ 1 {ln ¢rl -2 cos w, [(137p1]
2, 9 (-1 2
2 L\ 122 1

9,= h,Vu ¢ -1 ¢ -_1:_|n ¢+ cOoS w, {137q°}
22 o2 21 2 ¢-1

qw=h‘V(- 24 _—;-ln §+1)Sin @. [137r’]
-1 -

On the axes the velocity is in the direction of £ V and ¢ = |o|. On the saxis, cos w =¥ 1,
172
p=0,y=2%(%*-1 " and

-
t kR V [ | k 1 # k 1 E [137s7]
V== 9§= 1 ny— + + - - . 37s
L {yl yz /‘yz'—+ %2 3 J

On the 2axis p=%1, 2= %k and

oem bV k |z 1ln |z|+k\
=-h - n =),
32_/‘,2 2 Ia:!-k/

which represents the limit of ¥ g, as il » 1 white w =0. On the z-axis, =0, sin 0 = 1,
1/2
2=tk -1) " and

k 1 22k
v=¥qw=—hlV —\/22+lc2-3-ln ye +*2 *% . [137t7]
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Over the surface of the ellipsoid itself, where { - ¢, nd is constant, the transverse
component ¢ varies relatively in the same manner as over a sphere. Furthermore, around the

circumference in the 2z-plane, where sin w = 1 1, ¢ is constant, since

/ % 1 ot 1 lt+e
g=lgl=hV - —— e n V| == =l —=]. (137]
4‘02 -1 & (,0 - 1/ \1 - C2 & 1-¢

The kinetic energy of the fluid, found from Equation (136h] in analogy with Equation

(13717] but with use of the integrals j’l(l - 1% dyp = 4/3 snd f2”0052 wdw =7, is
- 0

1+e
In ~
1-¢

] e
- rrphlaszz( -
3 2

(Ql}—‘

) . (137v”]

Case 4. Flow Past a Prolate Spheroid Perpendicularly to Its Azis of Symmetry. Let the
fluid at infinity flow atl velocity V toward negative yor =0, w =n Adding Vy for the

unifotm stream,

Ly 1/2 2 172 ¢ i C+ 1y .,
b=kV( -1 (1-49 [l+bl(§2_1_gl" C_])]cosw. (137w °)

If a prime denotes values given by Equations [137p* q%r’]; from Equations [1370,p,q],

1/2 1/2

1 -2
A cos . [137x%y’]

=gf-V —
gz =9¢ ¢ R

2-1

&% -

cos w, ¢, = qll’+ Vi

(S

9 = 9 *+ V sin w. (1372 ]

Everywhere v = »°~ V, and cn all thcee axes ¢ = o],
On the ellipsoid itself, where {= { = 1/¢, 9 0 and

0,3 9,3

2¢3h V [ COS @ 238V o
q, = , ¢ = ~— sin w, [137a”, b "]
H 2172 2 172 @2

(1-e?) " (1-e2p? -

where p = 2/a. The same remarks concerning ¢ apply here as in Case 3, except that here

around the circumference of the ellipsoid in the 2z-plane ¢ = |g_ | where |g | is given by
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Equation [137b "’} with sin » omitted. The coefficient 2 e3h1/(1 - %) becomes 2, as for a
cylinder, as e » 1, and 38/2, as for a sphere, as ¢ -+ 0.

Case 5. Rolation of a Prolate Spheroid about an Equatorial Azis. Lot the spheroid
represented by Equation [137u] rotate ai angular velocity (! about the y-axis, in fluid at rest
at infinity.

At any instant, the velocity potential ¢ can be expressed ia terms of ellipsoidal co-
ordinates whose axes coincide with those of the ellipsoid, and the component of the fluid
velocity that is normal to the surface of the cllipsoid at any point will then be given by Equa-
tion {1370}, The direction cosines of the normal to the surface, on the other hand, are, from
Equations [136b, ¢, d],

; 8¢ Jx 8¢ dy 8 odz
= ms=—""", n=—"—""
BSC a 834 a¢ 8:;5; al

Substitution of these values for ¢ , !, m, a, and of w,, = w, = 0, oy = Q, in Equation [135d]

gives &s the boundary condition at the surface of the rotating ellipscid
d a d
o -Q (a-:—c -z —i) (137¢ ]

From Equations (137a, c]

d J .
3:, k#,s}k;(cz - )7Y2(1 - g )Y 2sin 0.

The following potential will be found to satisfy both the boundary condition and the
Laplace Equation (137r]:

‘ 3 1 1
é=Au(l2 -1V - HV2 = + -3~ sin w [(187d ']
2 -1 42_.1
: Go * 1 % 177
AR 2@l 64, + . (187 "]
2 $o =1 (Z-1
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At larze distances, using Equations {137y, z],

. 3 dp
G = == == (1 =p
3

) 3}
)12 24 ar 2 5 ,ar
5 5
H] P 5k?(;‘5 ]

approximately, since & » rand & - ea. Thus the disturbance of the fluid extends effectively
to only a short distunce.

The velocity components are

ol =2\ 12l ¢ 3 vl
(14*-——{2,'- A | 60- = S @210 2= | sin w, (137¢"']
0 ‘:2—“1 l- 4-2_ 2 4‘1
| 2.1\1/2 i 3 +1
q“:-—:-(]-»lp )( 6 X Gﬂ --;(ln4 : sin w, [137g"’]
\ ¢2-n -1 27 €-1
A 1 3
9 =-kl—‘ 3+ o —ggln éi oS w. {137h ']

The pressure in thiz case can be found from Equation [11¢] or Equation [11d}. The kinetic
energy is given in Reference 1 and in the table following Secuon 147, Case 29(3).
In the last three cases there is no axis of symmetry, herce no stream function exists.
An extensive comparison of the theoretical formulas for the pressvre with observation,

resulting in general good agreement except in the wake, was reported by Jones.?34 (See
Reference 1, Article 105, 106; Reference 2, Section 15.57; Zahm. 102, 174)

138. PLANETARY ELLIPSOIDS (OR OBLATE SPHERO!DS) AND CIRCULAR DISKS

For an ellipsoid of planetary form, or an oblate spheroid, the treatment of the last
section requires only minor modifications.

For this case, oblate-spheroidal coordinates ¢, p.  are defined thus:

r - kpd, Y = @ COS v, 2 =asin o, {1384, b, ¢l
& - k(e 2(1-0HV2 {i38d)
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The surfaces ¢ = constant arc again ellipsoids of rovolution, but those for p = constant are
now hyperboloids of one :heet, with circular apertures lying in the yz-plane; the equations

are

2 2 ~2
W x
: 2 - 1. [i38e, f)
B(-p?) k%2

K K

In any plane through the r-axis the intercepts are orthogonal ellipses and hyperbolas with
common foci lying on the focal ring defined by = = 0, & - k. See Figure 232, on which again

only a half-plane is shown. Assume £20. Then-15 1.

&

\
“7
¢>0
0
S | n= 1 x
Y Axis cf Symmetry

Figure 232 — Choice of signs for oblate-spheroidal coordinates.
See Section 138.

The relation with the elliptic coordinates of Section 82 is now: % = ¢, £ = sinh §,

1t = sin ng; and z and y are replaced, respectively by @ and 2. Formulas for ¢ and p in terms

of z and y are casily written down from Equations [82e, f].
The polar and equatorial radii of any ellipsoid, in tie r and % lrections, respectively,

and the eccentricity of its meridian section are

L,f2_alzllcl: 1/(¢2*1),/2’ [138;:’ h‘ l]

a’=14 ¢ = k(P12 ol
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W hence

k=e'e’ 2lq%? C-ak - a"v/c’2—41'2 - \/1-0'2,’e’ (138j, k]

r=a’pu, w=c’(l —;12)1/2. (1381, n]

r——

% = k /1~u?% the remainder of the yz-plane is the hyperboloid p = 0. on which @ = % \/42 +1.
The hyperboloid for ¢ -~ = 1 is the entire r-axis, on which r = £ £¢.

The ellipsord for ¢ = 0 is a circular disk of radius @ = ¢ - Lk in the yz-piane, on which

Toward infinity, ¢~ and, approximately, @ = {1 -p)'2, r = @212 = k¢, so
thot {~r’k. g - 'k~ x’r = cos 0 in terms of the polar angle 0.
The coerdinate elements of distance are

-2 2\1/2 2 2\ 1/2
+ +
5;{:-: s R 54:, S5s =k 4 . 8[1, [138n, ol
S 2 1 2
£+l 1-p
s (2 V2 (1212
58, = Gow = k({+1) (1-p9) Sw. [138p]

The coordinate directions for { and u make angles 0. 0“ with the positive z-axis which lie

: < < T < 7 :
in the ranges 0 = 0p= -3 O‘L = — and are given by
] §2+1 172
cos 0, = ~sin 0}1 = : [138q]
';2*'1‘-

or

) ) S d do 0
q—:-__(_ _{i,(] =-__l__.2_q :_lﬁ. [138r, s, t]
& sy, oL 8s M e @ ds  dw

The Laplace equation, and the relations between & and ¢ if ¢ exisls, are

J ) d dé 2yl a2 )
—1[@%1)3’5] t—[u—,ﬂ)——:] 2B T2, {138u)
a( 774 dp dp (€24 1) (1-p2) d0?

-t



J do Y
..i’/l.. - k(1-p?) ._(& 4
a¢ op  du

— = - k(¢241)

9¢
a{ ’

{138v, w]

Suppose now, that a solid ellipsoid is given whose surface is defined by

x
—_ 4 =1,
al

{138x]}

Then its ellipticity is e = (c2-a2)!/?/¢; and for this ellipscid a’= a, ¢’ = ¢, so that, if on

it { = {,, from Equation [138j, K],

k=cc= \Je?-d?, goua/,{‘=a/\/cz-a2 = \/1—82 /e, e=(§g+1)—”2. [138y, z, 2°)

and on this ellipsoid

=ap, @=cyl-pl

Five cases of the flow around such an ellipsoid or oblate spberoid will be treated. The

{138b; ¢’}

general case can be handled by superposing flows of two or more of these five types.

Case 1. Oblate spheroid or Circular Disk, Moving Perellel to its Azis of Symmetry. Let

its velocity se U toward pu = 1; see Figure 233. Then

— a Axis of Symmetty

o~ 1 i I -1 x
a0
&

Figure 233 — Diagram for transiation of ar: oblate spheroid in the direction

of its axis.
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b .‘121‘ Lll‘(l-g(\Ot_l h

{1384 "]
! 2 4 2 2 ~1 ¢ .
Y= ~:;512k V(¢ -+ 1) (1 =p®) [ceot™ { = - . {138e°]
- 4241
(h -1 / -1
gy = [cOUTY - - =[sin"te—el1~e? ] . [13807)
(,'g+1

!

Ife=1,s0that {3 -0, g, =2'n As -0, and { -, e3¢, 372, as is easily verified by

using Equation {138x °] and the series, obtained from Equation [33k] and valid for any real
number ¢ 21,

1 1
cot™! ¢ = tan™! —_—

! (138g"]
- + PP g
13 353 555

1
£

Toward infinity, with use of the last series,

1 p 1 cos 0
= kU = —03gc3 U
R M 2

r

approximately, since & = ec. Thus the flow is that of a dipole. As e~0 and e3gz—o3/2,
é-c3Ucos 0/2:2, as for a sphere of radius ¢; see Section 127.

The velncity coriponents in the coordinate directions are ¢ = 0 and

2 /2 ¢
gr=9, Un <l cot™ ¢ - 2|, (138h ]
G 42 *’12 4-2 o1

1-p2\172 .
1, = =9,V - 1-Ceot™t ). [138i ")
l:2+,4"
On the saxis, p=21, r=2k¢ ¢ - lul and
x klr .,
u=:q£=g20 ('OL—I-E——-- —-——L (138j°]
s k 22442
3690

e o i S



———y

On the equatorial or yz-plane, p = 0, @ = ky¢2+1, ¢ = |u| and

k

Jor-x2

k
o -l . ’,
u=gq,=-g,U =sin™h = ); {138k "]

in particular, on the circumference of the ellipsoid itself,

{=(y 0=k 4(2)*1 ~ k/¢ and

us -g,U i — -sin™! e\ (1381°]
1"'(,’2 I

For a figure, see Figure 234 as explained a little later.
The kinetic energy of the fluid, found by the method that was employed in obtaining
Equation [137f°), is

T=—npcig,U? (c—\/l-—e2 sin™! e) {138m ]

w | o

Circular Disk

If {;=0, ¢ =1, a=0and the ellipsoid becomes a circular disk of radius ¢ = k moving
perpendicularly to its surface. Then g, = 2/». On the disk @ = ¢(1 _”2)1/2 and ¢ - - Uar?/Q.
Also, on its front face, ge=u= U and

cg oz 2@ :
g~=—-¢ 1-p* - . {138n°1
@ r ap T (02_?;2)1/2

Here pt increases inward, @ outward, hence the negative sign. At the edge g5+=. On the
rear face p = —(1-52/¢?)1/2 and the velocity is reversed.
The kinetic ~nergy of the fluid is, from Equation (138m ],

4
T =?pc302. (13807]

Some lines of flow near a moving circular disk, drawn for equidistant values of ¢, are
shown in Figure 234.
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The same diagram will serve to illustrate the motion outside of any oblate spheroid
placed so that its focal circle coincides with the perimeter of the disk, such as the one shown
in outline by the elliptical curve in Figure 234. The ellipsoid is assumed to be in translation
along its axis of symmetry. For, if £ is fixed, variation of {, changes only the factor of pro-
portionality g, in . which changes ¢ at all points in the same ratio but does not alter the

geometrical pattern of the <treamlines.

Figure 284 — See Section 138. Case 1. (Copied from Reference 1.)

Case 2. Flow Past an Oblate Spheroid or a Circular Disk, Parallel to its Axzéis. Let the
velocity of the fluid at infinity be U toward ¢ = 1. Adding to the expressions for ¢ and ¢
in Equations {136d " e ) Ur for & and U522 for ¢,

S =kUpll+g,(1-¢ cot™ )], [(138p°]

G~ KU 1) (1-42) [l—yz(COt"s’— d )1 (13897
3
2 2]

Here again g - 0: and. if a prime denotes values as given by Equations [138h “to 138k},

»2 1/2 2\1/2
¢+ 1 1-p ,
- \ ’ ) (1387, s°]

7¢~q;-tn o8 B P MU Y
¢ N [ " .
5 "2*”2/ 22

*"2

On the r-axis and in the yz-plane ¢ - (v and u - u”"~ L.
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On the ellipsoid itself, where ¢ = £, using the value of g,, ¢ =0, 9 = 0, hence

q= |q'_l| , and, after combining terms,

9,V 1-p2 \1/2 , -
W=~ 3 = el —m——
Got1 Cgﬂzz Ccme* @

[136L°)

from Equations [138y, z) and Equation {138d].
A circular disk is obtained again by setting ¢ = 1, = 0. Then on the disk ¢ - lq;!
where ¢g~cquals + I and is again given by Equation {138n°]. In steady motion the excess

of pressure at points on the disk above that at infinity is

n2 C2 -’(7)'2

P‘Pw='1“P(U2"92)=lpU2<1- G ) (138u°]
2 2
Thus p = p_, at w = 0.844 c.

Streamlines selected to be equidistant at infinity are shown in Figure 235 for an el-
lipsoid with ¢, = 0.577, e = 0.866, g, = 1.628, and for a disk i1n Figure 236. For the ellips-
cid, g - p_, is shown on an arbitrary scale; it vanishes at = 0.68, w = 0.73¢c. Values of
p - p,, are shown along the z-axis and along the ellipsoid, also, plotted horizontally, along

the @-axis above the ellipsoid.

g
|
{ \
Axis of Symmetry a) X

Figure 235 — Streamlines for flow past an oblate spheroid in the direction of its axis
of symmetry. The distribution of pressure p is shown along.the axis, then over
the sphercid, and outward along a transverse axis. See Section 138, Case 2.
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——— e e
R 4————/‘7\\--\___W
Figure 236 ~ Flow past a circular disk. —_—— T
Sce Suection 138, Case 2. e e
_Axis of Symmetry =

Case 3. Motion of an Oblate Spheroid Perpendicular to its Azis of Symmetry. At ve-
locity V toward positive y, as in Figure 237, if { = ¢, on the ellipsoid,

¢ = AV (Z+ 1) 2 (1-p%)/2 (cot"l - cos w, (138v°)
\ ISES!
2 -1
{o+2 -1 eres . ~1
by =[———— -cot™! {, = -sin"!e} . (188w "]

(24 1) J1-e? /

As e~ 0 and { -, c3h2»3,’-l, as appears from the series (1 - e)™1/2 =1+ ¢2/2+.... and
the series for sin™! ¢ as obtained from Equation [33j). As e-+1and {;0, ,+0. Thus ¢
equals 0 for a disk, as it must.

Toward infinity, {~r’k = r/ec and, using Equation [138g°] and the series

¢ 1 1\-! 1
RS | (A 2 m—.., (138x "]
42+1 4 4’2 4 43
2 272 S08 %@ 2 5 3 Y
& == hkV(1-p%) =—e btV = {138y}
3 42 B 3’3

approximately . which is the potential of a dipole with its axis parallel to y. As (-, and
e+ 0, since ¢34, +3/4, ¢ » ¢> Vy/2r3, as for a moving sphere of radius c.
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n=lg
w-’ ] <
S/
X/
V4
(=] < 0
)
4
W

Figure 237 .- Diagram for translation of an
oblate spheroid parallel to an equatoria!
axis. Dots indicate traces of a focal
circle. See Section 138, Case 3. p==1

The components of velocity in the coordinete directions are, from Equations (138, s, tl.

1-42 \1/2 2,0
qg-_-lsz K < -¢cot™! ¢} cos w, [1382°)
624-,12 CZ+1
/ 2,1\1/2 b
9, = h,Vi ¢ cot™t 7 - 2 cos w, {138a°’]
424-[1.2 42-!-1
g,V [ent™ - — sin w. (138b")
{41

On the y-axis and on the zz-plane the velocity is in the direction of £ V and ¢ = |»]. On the
y-axiscos w =21, u=0,y = k(2+1)"2, ¢ = @¥/k2-1)1/2, and

-S$in

V= iqé-=/l V( —
2
yz\/y2_k2 Iy!

2 2 X
Atk in=1 = ) 1138¢ "]
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On the x-axis 2 = £ £¢ and, from the limit of ~q,, 8s a+% 1 with w = 0,

k
et oo L EALY o
¢ 22 4 g2 ;

On the z-axis p=0,sinw=%1, 2~ 2 £k(L%+ 1)!/2, and

—\
ko kyJz2-k2
in~! I 2 ) (1380 "] .

Over the surface of the ellipsoid itself, on which { = ;o and is constant, the relative
variation of ¢ is similar to that over a moving sphere. Furthermore, around the circumference

in the transverse or zz-plane, the velocity ¢ is uniform, since |sin w| = 1, and, using Equa- i

tions (136z, a”’l,

q=1g,1=h,V (sin"‘ e-ve\/l-ez) . (138f")

The kinetic energy of the fluid, found by the method emplo; ed in cbiaining Equation

[1376°), is
2
T=-§ mphyc3VE y1-e? (sin"l e-e\/l-ez). 138"}

Case 4. Flow Past an Oblate Spheroid Perpendicular to its Azis of Symmetry. Let the
fluid at infinity flow toward negative y st velocity V. Then, adding Vy in ¢,

d=kV(2+ )2 (1Yl 1+)‘.2(cot"§-—f—-) cos w. {138h "}
{“+1

If a prime denotes values given by Equations {13827, a”, b”’],

qr=q; I’K(l-“2 - cos w, ¢, = ¢, + ¥V ¢e1 )M €oS w (1381, 1
y = y - S w, = N y

4 5
¢ ) 42“!‘2 " # ‘:2+ll2
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q.,=q, *+V sinw. (138k ]

On the y-axis and in the zr-plane ¢= {v] and v = 0" - V.
On the eliipsoid itself, where ¢ = ¢, 9= 0 and, using Equation [138w "] and Equa-
tions [138z. a ),

2¢3h,V
“ 2 ft COS w vy
I 21/2 2, ,2,2\1/2 (13817)
(1-e*)'"* (1-e“+e*n*)
2e3h,V
q, » ———— sin w. (138m "]
(1-e2)1/2

The same remsark concerning the variation of %o applies here as in Case 3. Around the cir-
cumference of the ellipsoid in the zz-plane, ¢ = lg | and q,, is given by Equation [138m ']
with sinw = 1. As e~0, the coefficient 2e3k2/(1-e2)”2-3/9, as for a moving sphere.

Case 5. Rotatior of an Oblate Spheroid or a Circular Disk cbout un Equatorial Azis.
Let the angular velocity be Q about the y-axis. Then

1

¢ =AY+ 1)V 2 p(1- )22 [ 3~ -3¢ cot™! ¢ ) sinow, (138n°"]
(2+1
(: - -1
- ]
A =k*Q | 3(2¢%+1) cot™ £-64, - . 13807’}
§§+ 1

At { = ¢ this satisfies the boundary cond ition stated in Equation [137¢ "], which is easily

seen to hold for planetary coordinates as weil. The axes are assumed to share in the rotation.

At large distances from the ellipsoid where ¢ is large, it is found, by expanding in
powers of 1/{ as in previous cases, using Equation [188g°], that approximately,

2 4 2 2
¢=— J(l_’l2)l/2sinw=—eac3A —z'
5 (3 5 s
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The velocity components are

A p(l- (e ”
W T —S——I—z——-—- 3(2§2+ 1) cot™! Z-6¢ - -—s—-—] sin w, [13sp ]
k ((;'2+l‘2)1’2 42+1

4 1-2 2 1/2 =1 ) . ’e
A (&% 1) 3¢ cot™! (-3 sin w, (138q "]
(42“‘2)1,2 IS
9 —'l ' 1 I
9o =7 1 3{ cot™! £-8+ COS w. (138c”’]
%1

For a circular disk, obtained by letting a0, so that {;+0 and k»c, 4 = 2¢2 Q,/3n,

and on the disk itself y=c{1-p?)!/2

Thus, on the side on which x> 0,
4 2 2 2\1/2 ’”
de—Qz(c*-y*-2%)""% 138s "]
3n
and the y and 2 components of velocity tangential to the disk are
ddp 40 ye

Vmoe e — 7 (138t7]
dy 3= (02_y2_32)l/2

We = —— = —— ——m————— [138u”]

On the opposite side of the disk ¢ , », and w are reversed in sign.

Over most of the disk the fluid flows rather as if to go round the axis in the direction

of rotation of the disk. Close to the edge the values of u and v are such that the radial com-

ponent of the velocity predominates, becoming infinite at the edge. and its direction is that
of a flow around the edge in opposition to the rotation.

The kinetic energy of the surrounding fluid of density p is

8
T = i p 02, (138w ")
‘3
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cosw, z2=c(1-p2)/2 sinw, and cp = £(c?-y2-2%)1/2,
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For, the velocity normal to the disk is that of the disk itseif or ¢, = Q2; hence writing

- WCOS w, 2 = sinw, and dS = Td T d w, Equation [17¢] gives, integrated over both faces,
| g 4

7

¢ 2
1 4
T = —)p/g;qnds = p/ ;— 023 ((‘2— ?2)’2)”2(1(7/ sine dw.
2 3n
0 0

The pressure can be found from Equation [11¢) or Equatien {11d].
In the last three cases there is no axis of symmetry, hence no stream function exists.

(See Reference 1, Article 107, 109; Reference 2, Section 15.54, 15.55; Zahm,102:174)

139. CIRCULAR APERTURE

The oblate-spheroidal coordinates described in the last section may I used also to
obtain the flow through a circular aperture in an ite plane.
For this purpose % is taken equal to ¢, the .adius of the aperture, so that from

Equations [138sa, b]
e=cpd, T=c(Cr1)V? a-pHYVY (139a, b)

and the ranges, -~ <{<o, 0§,1§1 are used, <o that, as in Figure 238, ;.= on the entire

z-axis.

0

>0

\u-l k4

Axis of Symmetry

Figure 238 - Flow y.rough a circular aperture in an infinite
plane using ovlate-spheroidal cocrdinates.
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In this way the discontinuity in the cocrdiraies on the plane r = 0 's displaced to the
outlying part where @ »& = ¢, which is row a riis houndary; the two halves of each coordi-
nate el'ipsoid meet there with oppesite values of {. The central part of the plane, on which
W<k = ¢, represents a circular aperture. In the last section, discontinuities of g were allow-
ed to occur on the central disk of radius £, but this part was there enclosed in a rigid body.
Thus 1n ench case continuity of ceordinates is presers .d throughout the entire space occupied
by fluid

It will be found that the differentiz' Equations {138u] and [138v, w] are satisfied by

p=deot™ ¢, Y=decp. {139c. d]

The velocity is 1n the ¢-direction, so that ¢ = iqél, and from Equations {138, n]

(Q2e1) V2 (2 piyV? [139e]

4
@W=7

0and @=c(l®+ 12 or

On either face of the plane boundary, g = 0. x

-~ 2.
¢ = £ 32— c; hence g = ¢! and

A ted
grm i ((2a1)y V2 ——C2 (1390)
s CC ~

~2 2
[BRVE X 4

The sign = is to be taken the same as the sign of (.

In the plane of the opening (=0, r =0, w = e1-p2 g = |u|, and
4 A
U= gps e = e, {139g]
ci \ 2 _Z)—Z

On the axis of symmetry or r-axis, p = 1, £ = ¢{, ¢ = {u| and

A cAd

e(L%+1)  z%+c?

{139h]

u=q‘:.-_-

The vetocity is thus infinite at the edge of the opening.
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The volume of fluid flowing per second through the opening is, using Equation [139g]
for u,

[4

Q= er{) uTda =27 c.l. [139i]

Some lines of flow for equidistant values of ¢ are shown in Figure 239. By adding a
uniform flow parallel to the plane, more general cases can be treated.
(See Reference 1, Article 108.)

/ \

Figure 239 — Syr.metrical streamlines for flow through
a circular aperture in an infinite plane wall.

140. ROTATING ELLIPSOIDAL SHELL

Consider the fluid inside a shell whose surface is the ellipsoid

2 2 2
f(, ¥, z):f—+-y— LI li=0. [140a]

a? 3?2 2

The dirz=tion cosines of tha  ~~al at any point of the surface are, from Equations [136b, ¢, d),

r Yy
1=2%k —, m=2%k ~—, n=9%%—.
a? b c?
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Let the ellipsoid rotate about the r-axis with angular velocity w . Then, by substitut-
ing for £, m, n in Equation [135d], and aiso u= ~d¢. dz, v=-3¢.'dy, w= -, dz2, @, =, =0,
the boundary condition o be satisfied by ¢ is

r dp Yy Iz 0¢ 1 1\
- e Gm——s A - me—— Sm e — 22 — - € — 2
@2 9 p2 dy .2 Oz “ Y y

A solution of the last equation which is also a solution of the Laplace Equation or
Equation [7a] is

b2-c?
¢= - — “ye [140b]
b4+c
The components of velocity are
b2-¢? b2-c?
u=0, v=- w2, W= oY [140c, d, e]
b2+ c? b2+ c?

The flow thus proceeds in planes perpendicular to the z-axis, and it is the same in all of
these planes, except for variation in the size of the occupied elliptical cross section. The

flow pattern is, in fact, the same as that inside an elliptica! cylinder rotaiing about its axis,
as illustrated in Figure 173.

The kinetic energy of the fluid is

2

pPw b2 02\2 - 9 b2 - 02)2

Te— ff (y2+2%) d:rdydz:-f; pabe (———lo)f. {140f]
2 b2+6'2' 15 62+02

To evaluate the integral, substitute z = az’, y = br’cos 9, 2 = er’sin 0.

Analogous results hold for rotation about the y- or z-axes; and by combining rotations
about the coordinaie axes the general case can be represented of rotation about any axis
pussing through the center of the ellipsoid.

The axes rotate, of course, with the shell.

(See Reference 1, Article 110; Zahm.17%)
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141. ELLIPSOID WITH UNEQUAL AXES

For the general ellipsoid with equation

N

2
T 2
AL [141a)
(12 b2 2

the appropriate ellipsoidal coordinates A, A,, A, are defined in terms of 2, y, 2 as the three

roots of a cubic in A, which can be written

2 2
T j/ 2
+ ¥ + = 1. [141Db]

a2+h  b2in 24

The use of these orthogonal coordinates in potential problems involves special fuactions
known as Lame ’functions, and no further details will be given here.

For translation of tlie ellipsoid through fluid at rest at infinity, parallel to one of its
axes, which will be taken as the e-axis without regard to its relative magnitude, the kinetic

energy of the fluid is found to be

%o 2
i abe p U, {141c)

d A
o, = abc / : . (141d]
a2+ )32 (624 X)12 (24 0)1/2

o
The defivite integral can be expressed in terms of elliptic integrsls, which are tabulated;
see Reference 3 or Reference 235, as listed later, where a>» 6> c.
For rotation at angular velocity » about an axis, here taken as the a-axis,

B2 -c)?lrg-Bg)
— = abe pw?, (141e]

T =
2(b2-02) + (b%+ %) (Bo=ve) 15

~ /A .
ﬂo = abc/ _-..___( , [141!]

[ @2+ N2 324032 (24 0)1/?

v
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o0

d\
yo = ab(‘f . [141g]
A ((12+;\)1/2 (b2+)\)1/2 (02+A)3/2

If ore axis is reduced to zero, the ellipsoid becomes an elliptical disk.
{See Reference 1, Articles 112-115; Durand,3 Volume I, p. 293; Tuckerman; 233 Zahm.”“)

142. ELLIPSOID CHANGING SHAPE

If the semiaxes of the ellipsoid defined by the equation

-1=0 {142a]

change with time at the rates g, b, ¢, without rotation of the ellipsoid and with its center at
rest, and if a point moves with components of velocity z, ¥, 2, in such a way as to remain al-
ways on the surface of the ellipsoid, then at this point Equation [142a] is always satisfied,

and, differentiating Equation [142a] with respect to the time,
. . , 2°
B g -~} —.-;c:O. [142b]

Now according to Equations [135f, g, k] the direction cosines of the normal to the ellipsoid
at the point z, y, 2 are

z 2
l=2%k—, m=2%2_, n=2%k—,
02

where k is a ccnstant of proportionality. After substituting in Equation (142b], the combina-
tion Iz + my + nZ occurs; this represents the normal component of the velocity of the surface,

which must equal the same component of the fluid velocity or

i db d¢
lu+mv+nw=-|l— + m— + p—
Jz dy dz
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in terms of the velocity potential ¢. Hence, after eliminating ¢, m, n from the last expression,

Equation [142b] gives for the boundary condition for ¢

2 2 2,
T Ly 2 T YV 260, [142¢]
e 97 p2 9y a2 02 a3 53 c3
This equation 1s satisfied by
1{é 3 ¢
(;I) = . — ——2-2 + —-y2 + —'32 ) [142(”
2\a b c

whic!. is a solution of the Laplace Equation or Equation [7a] provided

c

b
+— 4+ —=0.
b

Y

c

But this is merely the condition that the volume of the fluid enclosed in the ellipsoid or
47 abe/3 shall remain constant, so that (d/d¢) llog, (abc)] = 0.
The velocity components of the fluia are

Uz = —— = —F, Y=-~—Y, W= —2. [14Qe,f,g]

(Sce Reference 1, Article 110.)

143. FLOW PAST A PARABOLOID

Consider the steady flow parallel to the axis of a solid body having the form of a pa-
raboloidsl solid of revolution. With thie origin at its focus and the z-axis of cylindrical coor-
dinates along its axis, let the equation of the surface of the solid be

%2 = a? - 2z, [1432)

where 75 denotes distance from the axis. Its apex is at z = a/2 and it extends toward nega-

tive z. Let the fluid approach at velocity U from z = + .
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It is convenient to introduce also parabolic coordinates A,, A,, nearly as in Section 87,

so that

1
2 2 ~_ 2 20
‘r:’;()‘z _’\l)i (‘)"’\l’\zv A "03 A 0;

A= r-r, A, =\rez, r=ya?+T? [143b, c, d]

The surfaces, A, = constant or A, = constant, are confocal paraboloids opening, respectively,
toward positive and negative 2. Their .races on a plane through the axis are illustrated in
Figure 137. On the z-axis, A, =0 and 7 = A2/2 for @ 2 0, whereas Ay,=0andz= —z\f/‘2 for

2/“
<
z=0.

By introducing also for the moment y = @cos w and 2 = &'sin © where w is the angle
about the axis, it is found from Equation [136a] that

8s 33
A A 8s
L —i=(,\2+,\2)”2 —e 1
8A 82, Y se A,

[143e, 1]

Ell [

1 1

The surface of the given solid, on which z<a, is the paraboloid A, =\/a} as is easily
verified from Equation [143c]. On this surface the stream function ¢ must be constant. Fur-
thermore, in the surrounding space, as Ayroo, Twoo, and in the limit it is necessary that
v T2 = UA?A;/?; see Equation [119b] for a uniform stream. The differential Equa-
tion [136m] for ¢ becomes here

d 1 4 d 1 4
A U N I . A (143g)
Ay \AAgy 9N 9y \MAy 9N,
This equation and the two boundary conditions are satisfied if
)= S UNA2-g) = = (i ] [143h]
Vo= 5 1" 2—a,= 5 L@ —a(r—z).

Then ¢ = 0 on the solid and also where >0 on the z-axis.
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The corresponding potential, obtained by integrating Equations [136k, 1], in which the
lower signs are to be taken if A = A, pp = A,, and the components and magnitude of the velocity

are

——I-U(/\z-'Az)-a”ln)\ = Ur 2 Uln(r+ z) [143i)
~2 2 1 2 = —‘)a n(r+ ), B

&

U( 142 v = 2. p2(1-2 a? ) [148j, k, 1]
=U-1+r— 1 Qo= ) =V == . »
& \ 2r T 2 r(r+z) 7 ro 2r(r+a)) !

On the solid, since r + z = )\g =aq, ¢2 = U1 - a/2r).
The excess of pressure ovar that at infinity is everywhere positive. On the solid it is

P-pP, = palU?/4r; on the z-axis ahead of it, where r = z,

1 a a?
P-r., =‘—)pU2 —-—. (143mi}
& T 412

The streamlines are illustrated on half of a plane through the axis in Figure 240. The
streamlines shown are equally spaced in the uniform stream and correspond to equal increments
of /&, The value of p - p_ at points along the axis and on the paraboloid is also shown, on
an arbitrary scaloe and for steady motion.

(See Reference 2, Section 15.58.)

%

P - M\L S~ ?-7.

] Axis of Symmetry z
2

Figure 240 — Symmetrical flow past 2 parabeloid of revolution, The pressure
along the axis and over the paratoloid is also shown. The focus is at 0.

See Section 143.
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144, AXISYMMETRIC JETS

A fow cases of axisymmotric jets have been worked out by elaborate mothods of approx-

imation. A wesakly contracting jet was treated by Reissner.

236

Schack studied a round jet falling normatly upon a plate;237 his plot of the flow net,

labeled in terms of the older convention as to the signs of the velocity potential ¢ and the
stream function ¢, is reproduced in Figure 241. The figure shows half of a plane through the
axis Op of the jet; the plate lies along 04 produced both ways.
A jet issuing through a round hole in the infinite plane bottom of a tank, under the in-
fluence of internal pressure but not of gravity, was studied by Trefftz.238 His piot of the
flow net is reproduced in Figure 249; it also is labeled in terms of the older convention as to

the signs of & and . The axis of the hole lies along the vertical line at 4.

V16 /a3

v0 18| V2 | g~
+2.00 I
! 8
Ch < 115 be
)
: +1.50 <
[ N
W45
+1.00
154 2005
L—_:"Pn.so_
L
[:’ RYD
5 5 - $(8)=-3031
SR S 588158
' /Q “?" ; § ‘.q -:Z | L{ L ‘x J?—l-gﬂ
04 i} : ! et e
0 5 10 15 ) 25 30 3 40

Figure 241 — Some streamlines anc traces of equipotential surfaces, 1n a plane through
the axis OD, for a round jet of {luid striking a rigid plate OA. The sur{ace of the
fluid is at CB. See Section 144. (Copied from Reference 237.)
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VI 1]

Godrn 04 v 0.0507
v 01014
Figure 242 — Some streamlines and traces
L 01521 . . .
of equipotential surfaces in a plane through
-0.2 the axis at 4, for fluid issuing through a
@ 0.2028  round hole 1n an infinite plane wall, shown
) 02535 in part as CL. The surface of the issuing
LR | . . .
&) jet lies along CB. See Section 144.
b (1102 6 0308 (Copied from Reference 238.)
0.4 ] ( n
1 0.8
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145. OTHER THREE-DIMENSIONAL CASES

The following cases of relative motion between bodies and fluid have been treated:
(a) A spherical bowl, — see Basset,> 1. p. 149;
(b) An anchor ring, — see references on p. 156 of Reference 2.

(c) Solid produced by revolving a limacon about its axis, by Bateman,?4? _ see end of
Chapter V.

(d) Solids of revolution in general, by Kaplan.?!
(e) Certain special shapes of bodies by Koiossoff24! and Greenhill. 242

(f) Ellipsoid moving in a curved stream by Tallmien.239

(g) A point source on a sphere, by Masotti,?43

or on the axis of an oblate spheroid or a
circular disk or near a round hole 1n a plate, by Nicholson;?

44

(h) A line vortex near a spheroid, by Poggi;us

(i) Motion of two spheroids, by Sen;246

(j) Two coaxial circular disks in a stream, by Sircar?*7 and Nomura.24® The disks repel

cach other in proportion to cos? &, where & is the angle between the direction of the

stream at infinity and the normal to the disks, and also experience worques tending to

increase cos? &.
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CHAPTER Y

COEFFICIENTS OF INERTIA
146. EFFECTS OF FLUID INERTIA.

When a solid body submerged in an incompressible nonviscous fluid is acted voon by
an extoernal force, an acceleration is produced which is less than that for the same body in a
vacuum, since the external force must also accelerate the fluid surrounding the body. It will
be shown that the effect of the fluid can be represented by assigaing to the solid an equiva-
lent mass greater than the mass of the solid itself,

If the motion of the body is one of transiction at velocity U in a fixed direction while
the fluid is at rest at infinity, the velocity of the fluid at every point will be proportional to

[’ and its kinetic encrgy will be proportional to U2, Eence, the .otal kinetic encrgy of body
and fluid can be expressed in the form

T =

o] -

M+ kY7 U? {146a)

by

where } is the mass of the body,
M’ is the mass of fluid displaced by it, and
% is a constant of proportionality called the coefficient of inertia,

The value of & will depend upon the size and shape of the body and, in general, upon its orien-
tat.on relative to the direction of motion.

If F is the external force acting on the body in the direction of the motion, the rate at
which F dces work must be equal to the rate of increase of the total kinetic onergy;

h FU a7 M+ kMY U ld
c === = (] ) _—
ence il (M + ) T
d 7
and F={M+kM) —(;:i {146b]

Thus the acceleration produced is the same as if the mass of the body were increased from
Mto ¥ + kY’ The added term kY “may be ceasidered as an effective mass due to the pres-
ence of the fluid.

If " is constant, ¥ = 0, so that no force is required to keep a body :n motion provided
there is no fiuid friction. The coefficient of inertia has significance in cases of acceleration
only.

380

S I
i




For a body rotating about a fixed axis, similar considerations hold. The kinetic energy
of body and fluid can Le written

Ta—lg—(]-{»k[') ©? [146¢)

where / is tho moment of inertia ol the body about the axis of rotation,
1’ is the moment of inectia of the displaced fluid when rotating as if solid, and
o is the angular velocity.

The rate at which work is done then takes the form

ar , do
Gw=71;’-=(l+k1)w-l}r,

where @ is the torque acting on the body.
n o
Hence G=(F+kl) TR {146d)

This equation shows that no torque is required for constant angular rotation about a
fixed axis in an ideal medium, The ccnstant % is here the coefficient of inertia for rotation
about the given axis, and its value for rotation is usuzlly different from that for translation.

Two-dimensional flow, as described in Section 12 ° an important special case of fluid
flow in which the motion occurs in a set of parallel planes, so that there is no component of
velocity or acceleration in the direction perpendicular to these planes. In two-dimensional
cases it will be understood that all quantities refer to the pertion of the body and of the fluid
that is contained between two planes drawn patallel to the planes of motion and unit distance
apart, and Ty, M, M{, I, I{, will be written as referring to this portion. The coefficient of
inertia, on the other hand, being merely a constant of proportionality, does not require a subscript.

It has been assumed that the motion is irrotational and is therefore entirely determined
by the motion of the body, This assumption is essential. Furthermore, in defining the coef-
ficieat of inertia, only one component of the force or torque was considered; and the discus-
sion was limited Lo certain special types of motion, It is of interest to consider how the coef-
ficient of inertia may be vsed in certain other cases; and certain other features of the force
action of fluids upon moving bodies may also be mentioned without proof.

For 2 given body of finite dimensions, with its mass distributed in any given manner,
it can be shown that there is always at least one set of mutually perpendicular directions,
fixed relative to the body, in any one of which the body can move through frictionless fluid
without the action of ary-forces upon it and without exhibiting any tendency o rotate. These
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may bo called directions of free translation. Directions perpendicular to a plane of geomet-
rical symmetry for the surface of tha body always have this property. As a general rule, if
the body moves in eny other diroction, the fluid exerts a torque upon it, and this torque must
be balanced by extornal forces if rotation is to he prevented. lu cases of special symmetry
there may be many directions of free translation; and some bodies, such as - . .. - can move
freoly in any direction.

A force applied in a direction of free translation produces acceleration in that direction
only. A force applied in any other direction can be resolved into three perpendicular compo-
nents, each of which acts in a direction of free translation., Each component will then produce
a component of acceleration in its own direction, of tho same magnitude as if the other com-
ponents of force were absent; and the total acceleration will be the vector sum of the three
component accelerations so produced. It the coefficients of inertia-are different in the three
directicns, the resultant vector force and the resultant vector acceleration will not be parallel.
As a simple example, to accelerate a massless thin disk through the fluid in a direction ob-
lique to its plane, the applied force must necessarily he perpendicular to the plane of the disk.

To prevent rotational acceleration, i4 may be necessary also to apply a suitable torque,

Besides pure translation, other types-of steady motion not requiring the application
of external forces are possible., The most important case is that in which the surface of the
body has twc planes. of symmetry and the line of intersection of these planes passes through
the center of gravity of the body itself and is a principal axis of inertia for the body. Then a
steady rotation.is-possible about that axis; and a torque applied about such an axis generates
rotation about it in accord with the formula previously deseribed. In special cases several or
many such axes of free rotation may exist,

Two-dimensional metion may be further complicated by the presence of circulation about
the body, which then necessarily has the form of an infinite cylinder. In translational motion
the circulation gives rise to the familiar tcansverse force or lift; and the presence of circula-
tion may make steady rotation of the cylinder impossible in the absence of external forces.
Otherwise the staiements that have been made for the three-dimensicnal case held alsc for
two-dimensional motion.

In any case, the forces required to produce a given scceleration, translational or rota-
tional, are independent of the motion already existing and are the same as if the fluid were
at rest. This is easily seen from the pressure equation, as stated in Equation [9¢). Accel-
eration of the fluid motion is equivalent, at any time ¢, to the superposition upon the flow
already existing at that time of an incremental flow that starts from rest. Since this added
flow does not alter the velocities as they exist at time ¢, its only effect on the pressure at
time ¢, is to add to the value of d¢/d¢ a term that depends upon the acceleration but not on
the existing motion, It:may happen that part of the total acceleration is actually due to hydro-
dynamical forces brought into play by the mction of the body through the fluid, such as the
forces that have just been described; then the additional acceleration produced by the external
forces is the same as it would be if these hydrodynamical accelerations were absent.
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In tho same way it can be seen that the forces required to produce two . more types of
acceleration simultaneously are simply the vector sums of tha forces required to produce each
type separately,

In the last two chapters many expressions Lkave been obtained for the kinetic energy,
kM U%/2 or kl’w?/2, of the fluid surrounding a moving or rotating body. To obtain % from these
oxpressions, it is only necessary to intreduce the known vilue of M or I”and to divide the
kinetic energy by MU%/2 or I'v2/2. The values of the kinstic energy and of % are collected
for con.enience of reference in a table following the next section. A self-explanatory picto-
rial regresentation of the body is appended in each case.

147. MOTE ON UNITS.

In the formulas a consistent set of dynamical units is understood to be employed. as
was explained in detail in Section 18, The coefficient of inertia & is a pure numeric.

To illustrate the use of the units the following problem will be solved,

An ellipsoidal body, with semiaxes 6 feet, 3 feet, and 3 feet, weighing 25,000 pounds,
is suspended in sea water with its major axis vertical. When released, what will be its initial
acceleration? The density of see water is 64 pounds per cubic foot.

Solution: The resultant force on the body acts vertically downward and is equal to the
weight of the body minus the buoyant force.

4
Force = 25,000 e x 6 x8 x3x64=10,500 pounds,

25,000 1b-sec?
= 776 slugs = 776 P

The mass of the body is

The coefficient of inertia for prolate spheroids moving ‘‘end oa,”’ with a/b = £.0, is & = 0.209.
Hence the effective mass of the fluid is

—.;—nxﬁ x3x3x x 0.209 = 94.0 slugs,

by
.

and the total effective mass of body and fluid is 776 + 94.0 = 870 slugs. From Newton’s
second law of motion the acceleration is the resultant force divided by the mass or

10,500
870

= 12.0 it/sec?2,
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148. TABLE OF ENERGIES AND INERTIA COEFFICIENTS

a, b, r Radius of a circlc or semiaxis of an ellipse or ellipsoid,
or half-width or width of a lamina

e Ellipticity
k Coefficient of inertia, a dimensionless constant

apparent. increase in mass

In transiati =
n transiation, mass of displaced fluid

oT 9T1

k= or .
My 02

MU2?

P apparent increase in moment of iaertia
=

Ia rotation : ; — :
’ moment of inertia of displuced fluid

er 2T,
k=—~— or .
I’w? I w?
I’ Moment of inertia of displaced fluid rotating as a rigid body
about the assumed axis of rotation
I See under T,
M’ Mass of fluid displaced by body
M See under T
T Kinetic energy of fluid
T,1], M Values of T, I, M’ for fluid between two planes parallel to

the motion and unit distance apart, in cases of two-
dimentional motion

v Velocity of translation of body

0 An angle in radians

p Density of the fluid, in dynamical units

© Angular velocity of rotation of a body, in radizi.s por
second.

The fluid is assumea to surround the body and to be of infinite extent and at rest at
infinity, except where other conditions are indicated. In regard to units, see Sections 18, 147.
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A. TWO.DIMENSIONAL CASES

1. Circular cylinder in translation perpendicular to its axis:

@u

2. Elliptic cylinder in trarslation parallel to an axis, called the g-axis, either a> b as shown

or d>a:
g—
G

5. Plane lamina in translation perpendicular to its faces:

i

4. Elliptic cylinder rotating about its axis:

1 .
T, == pr a2 U2, us in Equation [68i],
;=g P

M = pr a2, k=1

1
T, =T b2 U2, from Equation [841],

M/ = pr ab, k=0b/a

.

T, —_-'-;-prr a? U2, as in Equation [86b],

.

-

kM) = pn a

1
T, = i pr(a?-5%)2 2%, as in Equation [106z],

-

(a2_b2) 2

ke —— |
2ab (a®+5?)

Axis of

1
I, =—pn ab (a®+5?),
Rotation 4

a

5. Plane lamina rotating about its central axis:

IR Axisof 1
Rotation 4 2 . . ,
P T, =TT e en as in Equation (106a ],
] "o
1
kI =—pr 4%,
t 17g 7
6. Plane lamina rotating about one cdge:
A Axis of T, T pr a*w?, as in Equation [106b°]
L R°">i°“ with 8 = 1,
T/ . .
l / Apparent increase in moment of inertia 9pn a®/8 2
[ \»90 Moment of iner‘tia of fluid- displa.ceq l.)ya B 3pm %/2 T4
cylinder of radius a rotating as if rigid

about & generator
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7. Tluid inside elliytic-cylindrical shel: rotating about its axis:

e
Axis of 2 12\2 -
; 1 a‘-3%
Rotation T == pzal (@ -0) w2, as in Equation {105m),
2 2
a“+d
1 2_b2 2
I} =—pnab (a%+52), k= - .
8 a2+ 52

8. Fluid inside semicircular cylindrical shell rotating about axis of the semicircle

8 1
T, &-71(— —---) pa‘w?, asin Equation [102e],

Axis of 4\ 2 2
Rotation m
S I/ == pat, k=2(—-=}=0.621.
4 -2 2
9. Fluid inside equilateral triangular prism rotating about its central axis:
T = L 8% w? as in Equation [103k]
1T gy P O ’
1 b
. 4 =
,l = Ié—"‘.—p s, k= 5 .

10, Lamina bent in form of circular arc, in translation at angle @ with chord:

Fluid | d2\
I 1
Fluid ! 0(7 T, =5 P (b2sin20+—é-j(/2, as in Equation [78r).
\

-2t

11. Cylinder with contour consisting of two similar circular arcs; see Section 89.

0=1807
dagrees c?
4 - .y (Cruss-gectional grea S= - [2(1-[') m+sin 2 0]
Zc degrees sin® 0
. 1 2nf 1 2
1. Trenslation arallel to chord AB. T, == pk SU2, ke[ — 1) -1
2 3 ,'2 S

1 2 \ o2
2. T-anslation perpendicular to chord AB: [ = ;pk sU?, o — (—1— + 1} -%- -1
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12. Cylinder with contour formed iy two similar parabolic arcs meeting perpendicularly; see
¢ .ction 91(d):

1 i
RLIY 22
Ml=3pk, T 2I\:MIU,
/4
1. Trauslation parallel to chord AB: &= -1 =0.525.
n
K4
2. Translation perpendicular to chord AB: %= - - 1 = 2.049.
g

Here K = 1.8541, the complete elliptic integral of modulus V 1/2.

13. Cylinder whose contour is formed by four equri semicircles:

1
M= " (2+7) ph%; for translation in any direction

1

2 .2
Ty=5 kiM% k=

K2 -1 =1.100.

24
For X, see the preceding case. See Section 91(e).

14, Double circular cylinder, each cylinder of radius a; see Section 90:

’, 2

w w

2 2
1. Translation parallel to line of axes AB: T, =pr.-0202( 5" 1) ) k-—;—-l=0.645.

2 2
2. Translation perpendicular to iine of axes AB: 7| =pna?l? (13- —1) , k=£3——1=2.290.

15. Cylinder of radius a sliding along fixed plane wall; see Section 90.

2
Flsid U T,= 1 pr a2 U? (.l’_ - 1) .
- 2 3
wall 2
’ 2 7
M/ = pm a?, k===~ 1=2.200.
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16, Cylinder of rhombic cross-section, in translation along a diagonal; see Section 91(c).
My =p s?sin 6
20 I (3/2)
sin@ 0 1 0
"i-5)G )
2n 2 2n

Hure @ is in radians and T" stands for the gamma function.

"'10

. 1
AN T1=-§kﬁllU2, k=

17. Rectangular cyliader in translation parali=i 10 a side; see Section 91(b) for references.

o

) My '« L%, » apparent increase in mass,

AN
<

AR

!
3
b

A
Yy i

Mo=p nw?/4 or M for a plane lamina of width w.

h/w=0 0.025 0.111 0.298 0.676 1.478 3.555 9.007 40.03
M/Mg=1 1.05 1.16 1.29 1.42 1.65 2.00 2.50 3.50

18. Circular cylinder with symmetrical fins:

1
Ty=— ki, U3 as in Equation (91g],

1 h D\?
M{:Tpnpz, k=1+(5—;) .

19. Cylinder of radius a in transiation and instantaneously coaxial with enclosing fixed cylinder
of radius &:

Fixed
1 . b24a? . .
T, =— pna*U* , as in Equation [104f)
2 32 - g2
b2 4 a2
M{:z pn a2, A .
b2-qa2

20. Cylinder of radius a in translation in eny direction across axis of enclosing fixed square
cylinder of side s, a/s small; see Section 91(l).

62
3 1
T.=_p”a2U2 (1‘*‘6-38*.010 3
) £ 9 \ s?
a2
Fluid ‘"1"' pm az, k=7 +6.88 —.....
32
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21. Cylinder of radius a in translation in any direction near a fixed infinite wall, a/A small:

1 2 . .
@9« Tl-?z- pra?l? (1+2—b‘2> , as in Equation [95g]
1
Fluid "} )
2 ‘e
Wali Ml',_., pr a2’ keld—+ v
942

(Only the force required to accelerate the cylinder is considered here.)

22. Cylinder of radius ¢ moving symmetrically between fixed infinite walls A apart, a/A rather
small:

Wall 1 2 [nal 2 )
s T, =§pn a?0? 1+§ _h—) +... |, asin Equation [46q]
< v
S 2 a2q?
2 o1 p—m
Vil Ml =pra-, k=1+ 3 h2 vevee

23. Plane lamina of width b moving symmetrically between fixed infinite rigid walls % apart,
b/h rather small:

Wall
1 . b2 n2b?
T,~—pU? — |1+ wess |y as in Equation {651]
T L ety 2442
o Fluid
Wall

For the general case, see Section 65.

24. For kinetic energy around a Rankine cylinder, see Section 54,

8. THREE-DIMENSIONAL CASES

25, Sphere in translatory motion

T=-§pa3l/2, as in Equation [1271],
v,
4 1

M =3P a3, k=;.
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26. Sphere moviang perpendicularly to infinite rigid plane boundery, a/k small: !

’ i m 3 3 03 2
2 Fluid Tngpa 1+§ e U®, as in Equation [130a]
DU ' A d
4 3 1 3 ad
M':—npa N k= — 14— T 4 cnee .
3 2 8 h3

Only the force required to accelerate the sphere is considered here; see Section 130.
27. Sphere moving parallel to infinite cigid plane boundary, a/k small:

3

g S a
T=—pad[1+— — +....| U%, as in Equation (130a]
lo 3? 16 43 ’ n Bquation
z (P\ with a =90 deg,
4 1 38 a®
H*ammp a3, ke (142 2l
3 2 \ 16 h3
28. Sphere moving past center of fixed spherical shell:
34243
T== pad b v?, as in Equation [129e],
3 p3_,3
-a
4 1 3349243
M’=—np a?, ke 22,
3 2 p3_,3

29. Prolate spheroid (or ovary ellipsoid), a>b; see Section 137:

Let e = eccentricity of sections through axis of symmetry,

g_\\/&/\/v/v— 1-¢2 ( e 1 1+e>
ﬂo" -—1In .

|
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(1) Translation ‘‘end on’":

4
W= pm ab?, k=k = - .

(2) Translation ‘‘broadside on'’:

Bo

£-Bo

2
T=-3—pn ab? U2

M o ab? k B
= - a » = = -
3 p” }Q 2'_B0

(3) Rotation about an axis perpendicular to axis of symmetry: -

Axis of i, 4
XIs 0 T=- klo?, 1=Igpﬂab2 (a?+b?),

(@2 ~32)" (By-2) .

) (a%+0?%) [(2(a®-B%) ~ (6% +6%) (By~ )]

k=k’

See Table 1, taken from Reference (1),
30, Oblate spheroid (or planetary ellipsoid), 2 < b, see Section 134, where b = ¢
Let e = eccentricity of sections through axis of syixmetry,

2 I
ao=-—3(e- Vi-e2? sin~le),

e

1 —
B0=—3[ Vi-e? sin~le -e(1-¢?)).
e

(1) Translation “‘broadside on’ or parallel to axis:

b]

2
= —pm ab?U?
3 2-ay,

4 %o
M=— pn ad?, k=k, = .
3 "'do
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TABLE 1

Coefficients of Inertia for Prolate Sphéroid

k, k, &
a/b Translation Translation Rotation about
‘‘end on"’ *“‘broadside on"’ Minor Axis
1.00 0.500 0.500 0
1.50 0.305 0.621 0.094
2,00 0.209 0.702 0.240
2.51 0.156 0.763 0.367
2.99 0.122 0.803 0.465
3.99 0.082 0.860 0.608
4.99 0.059 0.895 0.701
6.01 0.045 0.918 0.764
5.97 0.036 0.933 0.805
8.01 0.025 0.245 0.640
9.02 0.024 0.954 0.865
9.97 0.021 0.960 0.883
o 0 1.000 1.000

(9) Translation ““edge on’* or perpendicular to axis:

2 Bo
= — pn ab? U2 ,
3 2-8,
Bo
M=— pn ab? k=ky" 5 8,

1 4 .
T=?5k7b€ I= ;gpnab2(a24b‘h

(62-0%)" (ag-By)
T (@19 (2 (12-a?) - (a2 +5?) (ag-Bg)]

See Table II, in which %, and %, are from Reference (102).
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TABLE I

Coofficients of Inertia for Oblate Spheroid

k, k, k
b/a Translation Translation Rotation about
“*edge on'’ “‘broadside on"’ Equatorial Axis
1.00 0.500 0.500 0
1.50 0.384 0.803 0.115
2.00 0.310 1.118 0.337
2.50 0.260 1.428 0.587
3.00 0.223 1.742 0.840
4,00 0.174 2.379 1.330
5.00 0.140 3.000 1.978
6.00 ezl 3.642 2.259
1.00 0.105 4.219 2.697
8.00 0.092 4.915 3.150
9.00 0.064 5.549 3.697
10.00 0.075 6.183 4.019 .
R 0.000 o o0

31. Circular disk in translation perpendicular to its faces:
l/ 4 352 ; : ,
T= P U4, as in Equation {1380 };

(apparent increase in mass) 2

(spherical mass of fluid of radius a) T

82, Circular disk rotating about a diameter; see Section 138:

p atw?

T=

&l

(apparent increase in moment of inertia)

2
{moment of inertia of sphere of fluid of )

Axis of . 5
radius a or 8 pr a’/15)

Rotation
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33. Elliptic disk of ellipticity ¢ in translation perpendicular o its faces, a > b; Referances
(249) and (235):

2 1
i T=—£pa2bU2, e=— Va2-32;
3E a
— — (spparent increase in mass) b 1
4 ™= = .b|- )
(— pr @%b = ellipsoidal mass of fluid with
i 3 axes a, @, d)
n/2
En/ Vi-e?sin? 0 d0, the complete elliptic integral of the second kind to modulus e;
(} for table, see Peirce (20).
a/b=1 1.26 1.5 L7 2 2.5 3 4 6 9

k= 0.637 0,705 0.756 0.795 0.826 0.869 0.898 0.932 0.964 0.981

34. Ellipsoid, any ratio of the axes a, b, ¢; see Section 141:

” dA
Let a4 = abc/
A (02+)\)3/2 (b2+. )1/2 (02+)t)1/2
i dA
Bo = abc/
A (a2+)\)1/2 (62+/\)3/2 (02_*_/\)1/2
d da
Yo = abc/
A ((22+)\)1/2 (b2+)\)l/2 (02+A)3/2

(1) Translation perallel to the a-axis:

9 ag
i T=— pnabe /ES
sl 3 2—010
| v/
i 4 ag
M’=— pn abe, k=
3 2—a0
|
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(2) Rotation about the a-axis:

(62-¢%? (r9-By)

2(b%~c?) + (b2+¢?) (By-vo)

2

= Epn’ abe ©

(32-¢%? (yo-Bo)

2004 = ¢y + (0% + ¢2)? (Bo=vo) '

4
I'= 1—5 pn abc(b2+cz), k=

For the expression of a, 3, ¥, in terms of elliptic integrals, see N.A.C.A. Report 210
by Tuckerman (235) or Volume I of Durand’s Aerodynamic Theory (3). Some values of % und of
k’, distinguished by a subscript to denote the axis of the motion, were given by Zahm (174).

35. Fluid inside ellipsoidal shell rotating about its a-axis, any relative magnitudes of a, 3, ¢
(see last figure):

2 (b2-¢3? . ,
T= — prabc ———— o as in Equation [140f],
15 b2+02
4 b2_02\2
I’'= — pr abe (6% +c?), k= ° .
15 32402

36. Solid of revolution formed by revolving about its axis of symmetry the limason defined by

r=05(s + cos 0)/(s? - 1) where b and s are constants. The curve for s = 1 is a cardioid. A
few values of & are given by Bateman in Reference (240):

$ul

s§=1 1.1 1.2 2 3 0

k=0.578 0.573 0.569 0.548 0.527 0.500.
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